Preprint Article Version 1 This version is not peer-reviewed

Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius Furzeri Skeletal Muscle

Version 1 : Received: 30 July 2019 / Approved: 2 August 2019 / Online: 2 August 2019 (12:17:03 CEST)

A peer-reviewed article of this Preprint also exists.

Cencioni, C.; Heid, J.; Krepelova, A.; Rasa, S.M.M.; Kuenne, C.; Guenther, S.; Baumgart, M.; Cellerino, A.; Neri, F.; Spallotta, F.; Gaetano, C. Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle. Cells 2019, 8, 1169. Cencioni, C.; Heid, J.; Krepelova, A.; Rasa, S.M.M.; Kuenne, C.; Guenther, S.; Baumgart, M.; Cellerino, A.; Neri, F.; Spallotta, F.; Gaetano, C. Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle. Cells 2019, 8, 1169.

Journal reference: Cells 2019, 8, 1169
DOI: 10.3390/cells8101169

Abstract

Aging associates with progressive loss of skeletal muscle function leading up to sarcopenia, a process characterized by impaired mobility and weakening of muscle strength. Molecular mechanisms underpinning sarcopenia are still poorly characterized. Since aging associates with profound epigenetic changes, epigenetic landscape alteration analysis in the skeletal muscle promises to highlight molecular mechanisms of age-associated sarcopenia. The study was conducted exploiting the short-lived turquoise killifish Nothobranchius furzeri (Nfu), a relatively new model for aging studies. The epigenetic analysis suggested for a less accessible and more condensed chromatin in old Nfu skeletal muscle. Specifically, an accumulation of heterochromatin regions was observed as consequence of increased levels of H3K27me3, HP1alpha, polycomb complex subunits and senescence associated heterochromatic foci (SAHFs). Consistently, euchromatin histone marks, including H3K9ac, decreased. The integrative bioinformatics analysis of RNASeq and ChIPSeq, related to skeletal muscle of Nfu at different ages, revealed a down-modulation of genes involved in cell cycle, differentiation and DNA repair and an up-regulation of inflammation and senescence genes. Undoubtedly, more studies are needed to disclose the detailed mechanisms, but this approach revealed an unprecedented specific features of Nfu skeletal muscle aging, potentially associated with sarcopenia onset and consequent impairment of swimming and mobility typical of old Nfu.

Subject Areas

aging; skeletal muscle; sarcopenia; frailty; chromatin; epigenetic changes; histone modifications; Nothobranchius furzeri

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.