Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Statistical Structure and Deviations from Equilibrium in Wavy Channel Turbulence

Version 1 : Received: 15 July 2019 / Approved: 16 July 2019 / Online: 16 July 2019 (08:22:20 CEST)

A peer-reviewed article of this Preprint also exists.

Khan, S.; Jayaraman, B. Statistical Structure and Deviations from Equilibrium in Wavy Channel Turbulence. Fluids 2019, 4, 161. Khan, S.; Jayaraman, B. Statistical Structure and Deviations from Equilibrium in Wavy Channel Turbulence. Fluids 2019, 4, 161.

Abstract

The structure of turbulent flow over non-flat surfaces is a topic of major interest in practical applications in both engineering and geophysical settings. A lot of work has been done in the fully rough regime at high Reynolds numbers where the effect on the outer layer turbulence structure and the resulting friction drag is well documented. It turns out that surface topology plays a significant role on the flow drag especially in the transitional roughness regime and therefore, hard to characterize. Survey of literature shows that roughness function depends on the interaction of roughness height, flow Reynolds number and topology shape. In addition, if the surface topology contains large enough scales then it can impact the outer layer dynamics and in turn modulate the total frictional force. Therefore, it is important to understand the mechanisms underlying drag increase from systematically varied surface undulations in order to better interpret quantifications based on mean statistics such as roughness function. In this study, we explore the mechanisms that modulate the turbulence structure over a two-dimensional (2D) sinusoidal wavy surface with a fixed amplitude, but varying slope. To accomplish this, we model the turbulent flow between two infinitely wide 2D wavy plates at a friction Reynolds number, $Re_{\tau}=180$. We pursue two different but related flavors of analysis. The first one adopts a roughness characterization flavor of such wavy surfaces. The second one focuses on understanding the non-equilibrium near surface turbulence structure and their impact on roughness characterization. Analysis of the different statistical quantifications show strong dependence on wave slope for the roughness function indicating drag increase due to enhanced turbulent stresses resulting from increased production of vertical velocity variance from the surface undulations.

Keywords

roughness; wall turbulence; direct numerical simulation; wavy surface

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.