Preprint
Article

On the Determining Role of Texture in Causing Delamination During Impact Fracture of Ti and Nb-Ti Microalloyed Steel

This version is not peer-reviewed.

Submitted:

04 July 2019

Posted:

08 July 2019

You are already at the latest version

Abstract
700 MPa grade Ti and Nb-Ti microalloyed steels produced by thermo-mechanical control rolled processes (TMCP) were studied to elucidate texture that contributes to delamination and consequent impact toughness. The microstructure of Ti and Nb-Ti steels consisted of ferrite and bainite. Compared with Ti steel, Nb-Ti steel was characterized by a microstructure with finer ferrite and more bainite. The results from tensile and impact tests indicated that there is insignificant change in tensile properties, but toughness was greater in Nb-Ti steel compared with Ti steel. More severe delamination in Nb-Ti steel is attributed to stronger α-fiber (RD ||<110>) texture than Ti steel, especially {100}<110>, {113}<110> and {112}<110> texture. Typical cleavage river patterns were not observed on delaminated fracture surface, instead the cleavage fracture surface indicated some dimples. Interestingly, the impact energy of samples with delamination was greater than samples without delamination in the ductile–brittle transition region. The study suggests that delamination in the ductile–brittle transition zone may also be representative of high toughness.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

751

Views

316

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated