Preprint
Article

This version is not peer-reviewed.

Infinitesimal Transformations of Locally Conformal Kähler Manifolds

A peer-reviewed article of this preprint also exists.

Submitted:

21 June 2019

Posted:

24 June 2019

You are already at the latest version

Abstract
The article is devoted to infinitesimal transformations. We have obtained that LCK-manifolds do not admit nontrivial infinitesimal projective transformations. Then we study infinitesimal conformal transformations of LCK-manifolds. We have found the expression for the Lie derivative of a Lee form. Also we have obtained the system of partial differential equations for the transformations, and explored its integrability conditions. Hence we have got the necessary and sufficient conditions in order that the an LCK-manifold admits a group of conformal motions. Also we have calculated the number of parameters which the group depends on. We have proved that a group of conformal motions admitted by an LCK-manifold is isomorphic to a homothetic group admitted by corresponding K\"{a}hlerian metric. We also established that an isometric group of an LCK-manifold is isomorphic to a some subgroup of homothetic group of the coresponding local K\"{a}hlerian metric.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated