Preprint
Article

Efficiency of Artificial Neural Networks in Determining Scour Depth at Composite Bridge Piers

Submitted:

14 June 2019

Posted:

17 June 2019

Read the latest preprint version here

Abstract
Scouring is the most common cause of bridge failure. This study was conducted to evaluate the efficiency of the Artificial Neural Networks (ANN) in determining scour depth around composite bridge piers. The experimental data, attained in different conditions and various pile cap locations, were used to obtain the ANN model and to compare the results of the model with most well-known empirical, HEC-18 and FDOT, methods. The data were divided into training and evaluation sets. The ANN models were trained using the experimental data, and their efficiency was evaluated using statistical test. The results showed that to estimate scour at the composite piers, feedforward propagation network with three neurons in the hidden layer and hyperbolic sigmoid tangent transfer function was with the highest accuracy. The results also indicated a better estimation of the scour depth by the proposed ANN than the empirical methods.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

548

Views

509

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated