Preprint
Article

This version is not peer-reviewed.

Efficiency of Artificial Neural Networks in Determining Scour Depth at Composite Bridge Piers

Submitted:

31 August 2019

Posted:

02 September 2019

You are already at the latest version

Abstract
Scouring is the most common cause of bridge failure. This study was conducted to evaluate the efficiency of the Artificial Neural Networks (ANN) in determining scour depth around composite bridge piers. The experimental data, attained in different conditions and various pile cap locations, were used to obtain the ANN model and to compare the results of the model with most well-known empirical, HEC-18 and FDOT, methods. The data were divided into training and evaluation sets. The ANN models were trained using the experimental data, and their efficiency was evaluated using statistical test. The results showed that to estimate scour at the composite piers, feedforward propagation network with three neurons in the hidden layer and hyperbolic sigmoid tangent transfer function was with the highest accuracy. The results also indicated a better estimation of the scour depth by the proposed ANN than the empirical methods.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated