Preprint
Article

Towards Dewetting Monoclonal Antibodies for Therapeutical Purposes

This version is not peer-reviewed.

Submitted:

28 May 2019

Posted:

29 May 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Dewetting transition - a concept borrowed from fluid mechanics - is a physiological process which takes place inside the hydrophobic pores of ion channels. This transient phenomenon causes a metastable state which forbids water molecules to cross the microscopic receptors’ cavities. This leads to a decrease of conductance, a closure of the hole and, subsequently, severe impairment of cellular performance. We suggest that artificially-provoked dewetting transition in ion channels’ hydrophobic pores could stand for a molecular candidate to erase detrimental organisms, such as viruses, bacteria and cancer cells. We describe a novel type of high-affinity monoclonal antibody, which: a) targets specific trans-membrane receptor structures of harmful or redundant cells; b) is equipped with lipophilic and/or hydrophobic fragments that prevent physiological water flows inside ion channels. Therefore, we achieve an artificial dewetting transition inside receptors’ cavities which causes transmembrane ionic flows discontinuity, channel blockage and subsequent damage of morbid cells. As an example, we describe dewetting monoclonal antibodies targeting the M2 channel of the Influenza A virus: they might prevent water to enter the pores, thus leading to virion impairment.
Keywords: 
Influenza A virus, immunology, immunotherapy, receptor; tumors
Subject: 
Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

416

Views

400

Comments

2

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated