Ma, Y.; Yang, A.; Zhu, H.; Muhammad, A.; Yang, P.; Huang, B.; Niu, F. Effects of Bi2O3 Doping on the Mechanical Properties of PbO Ceramic Pellets Used in Lead-Cooled Fast Reactors. Materials2019, 12, 1948.
Ma, Y.; Yang, A.; Zhu, H.; Muhammad, A.; Yang, P.; Huang, B.; Niu, F. Effects of Bi2O3 Doping on the Mechanical Properties of PbO Ceramic Pellets Used in Lead-Cooled Fast Reactors. Materials 2019, 12, 1948.
Ma, Y.; Yang, A.; Zhu, H.; Muhammad, A.; Yang, P.; Huang, B.; Niu, F. Effects of Bi2O3 Doping on the Mechanical Properties of PbO Ceramic Pellets Used in Lead-Cooled Fast Reactors. Materials2019, 12, 1948.
Ma, Y.; Yang, A.; Zhu, H.; Muhammad, A.; Yang, P.; Huang, B.; Niu, F. Effects of Bi2O3 Doping on the Mechanical Properties of PbO Ceramic Pellets Used in Lead-Cooled Fast Reactors. Materials 2019, 12, 1948.
Abstract
In this paper, the effect of Bi2O3 doping on the mechanical properties of PbO ceramic pellets was studied. For this purpose, different ratios of Bi2O3/PbO (i.e., xBi2O3–(1-x)PbO, where x is 0, 1, 3, 5, 7 wt%) were fabricated and sintered at 570, 620, and 670°C. Mechanical properties including density, hardness, flexural strength, and sintering of PbO were studied for the aforementioned compositions. Phase compositions, microstructures, and worn surfaces of the composites were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD analysis revealed that a solid solution formed in the composite ceramic. The best suited conditions of temperature and doping of Bi2O3 for optimal sintering are 620°C and 3 wt%, respectively. The hardness of the 3 wt% Bi2O3–97 wt% PbO ceramic was 717 MPa, which is about four times higher than the hardness of pure PbO; in addition, the strength of the composites was 43 MPa, which is two times higher than that of pure PbO. The integrity of the composites was verified using the lead–bismuth eutectic alloy flushing experiment. Results of this research paper are important for future studies of oxygen control in the lead–bismuth eutectic alloy of lead-cooled fast reactors.
Chemistry and Materials Science, Ceramics and Composites
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.