Preprint
Article

This version is not peer-reviewed.

Knockdown of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells

A peer-reviewed article of this preprint also exists.

Submitted:

23 April 2019

Posted:

24 April 2019

You are already at the latest version

Abstract
The core components of regenerative medicine are stem cells with high self-renewal and tissue regeneration potentials. Adult stem cells can be obtained from many organs and tissues. NANOG, SOX2 and OCT4 represent the core regulatory network that suppresses differentiation-associated genes, maintaining the pluripotency of mesenchymal stem cells. The roles of NANOG in maintaining self-renewal and undifferentiated status of adult stem cells are still not perfectly established. In this study we define the effects of downregulation of NANOG in maintaining self-renewal and undifferentiated state in mesenchymal stem cells (MSCs) derived from subcutaneous adipose tissue (hASCs). hASCs were expanded and transfected in vitro with short hairpin Lentivirus targeting NANOG. Gene suppressions were achieved at both transcript and proteome levels. The effect of NANOG knockdown on proliferation after 10 passages and on the cell cycle was evaluated by proliferation assay, colony forming unit (CFU), qRT-PCR and cell cycle analysis by flow-cytometry. Moreover, NANOG involvement in differentiation ability was evaluated. We report that downregulation of NANOG revealed a decrease in the proliferation and differentiation rate, inducing cell cycle arrest by increasing p27/CDKN1B (Cyclin-dependent kinase inhibitor 1B) and p21/CDKN1A(Cyclin-dependent kinase inhibitor 1A) through p53 and regulate DLK1/PREF1. Furthermore, NANOG induced downregulation of DNMT1, a major DNA methyltransferase responsible for maintaining methylation status during DNA replication probably involved in cell cycle regulation. Our study confirms that NANOG regulates the complex transcription network of plasticity of the cells, inducing cell cycle arrest and reducing differentiation potential.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated