We improved a magnetic scanning microscope for measuring the magnetic properties of minerals in thin sections of geological samples at submillimeter scales. The microscope is comprised of a 200 µm diameter Hall sensor that is 142 µm from the sample; an electromagnet capable of applying to the sample up to 500 mT dc magnetic fields over a 40 mm diameter region; a second Hall sensor arranged in a gradiometric configuration to cancel the background signal applied by the electromagnet and reduce overall noise in the system; a custom-designed electronics to bias the sensors and provide adjustment for background signal cancelation; and a scanning XY stage with micrometer resolution. Our system achieves a spatial resolution of 220 µm with noise at 6.0 Hz of »300 nTrms/(Hz)1/2 in an unshielded environment. The magnetic moment sensitivity is 1.3 × 10−11 Am2.1/2 We successfully measured the representative magnetization of a geological sample using an alternative model that takes into account the sample geometry and identified different micrometric characteristics in the sample slice.