Preprint
Article

This version is not peer-reviewed.

New Generalized Projection Speeds Up Audio Declipping

A peer-reviewed article of this preprint also exists.

Submitted:

06 March 2019

Posted:

07 March 2019

You are already at the latest version

Abstract
In theory and applications, it is often inevitable to work with projectors onto convex sets, where a linear transform is involved. In this article, a novel projector is presented, which generalizes previous results in that it admits a broader family of linear transforms, but on the other hand it is limited to box-type convex sets in the transformed domain. The new projector has an explicit formula and it can be interpreted within the framework of proximal optimization. The benefit of the new projector is demonstrated on an example from signal processing, where it was possible to speed up the convergence of a signal declipping algorithm by a factor of more than two.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated