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Abstract: In theory and applications, it is often inevitable to work with projectors onto convex sets,
where a linear transform is involved. In this article, a novel projector is presented, which generalizes
previous results in that it admits a broader family of linear transforms, but on the other hand it is
limited to box-type convex sets in the transformed domain. The new projector has an explicit formula
and it can be interpreted within the framework of proximal optimization. The benefit of the new
projector is demonstrated on an example from signal processing, where it was possible to speed up
the convergence of a signal declipping algorithm by a factor of more than two.
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1. Introduction

Proximal algorithms are a modern branch of mathematical optimization, with the principal
building blocks being the so-called proximal operators. When proximal optimization is required in
applications, the composition of a function with a linear operator occurs often. This necessarily leads
to the knowledge of the proximal operator of such a composition. Generally, this requirement leads
to iterative solutions, but there are special cases in which the proximal operator can be expressed
explicitly.

In the paper, we introduce and prove a new projection lemma. It is inspired by an already
known property of proximal operators and, actually, our lemma generalizes the previous result in two
directions. On the other hand, the new property holds only for projectors on box-type sets. Projectors
represent a special case of proximal operators, and thus our lemma falls into the general concept of
proximal minimization; nevertheless, our result is valuable per se, since projections are used in many
other contexts and fields of science.

As an example, we apply the novel projection to the problem of signal declipping, i.e. to the
restoration of unknown parts of a signal degraded by clipping/saturation. The declipping model will
be quite simple, since it is not the goal of this paper to develop a method that outperforms the state of
the art, but rather to illustrate the use of the proposed lemma.

In Sec. 2, the proximal and projection operators are reviewed and the state of the art in this specific
area is presented. Right next, the novel generalized projection is introduced including the proof.
Section 3 then discusses the result and emphasizes its advantages over the current methods, and also
points out its limitations. Based on the new result, an example experiment in the signal processing
field is performed in Sec. 4, where we show that audio declipping benefits from our approach by the
computation being accelerating by a factor of at least two.
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2. Materials and Methods

2.1. Proximal algorithms

The proximal algorithm is an iterative algorithm that, under certain conditions, provides
a sequence of vectors {xk} converging to the minimizer of a sum of convex functions ∑i fi(x). This
is achieved by sequential evaluation of the so-called proximal operators associated with each of the
summands, fi. The most often used and studied are proximal algorithms that can minimize the sum
of two functions, such as the Forward-backward algorithm or the Douglas-Rachford algorithm [1,2];
however, there exist algorithms for minimizing the sum of arbitrarily many functions [3].

Algorithms that can minimize a sum involving a linear operator have been presented only recently.
Chambolle and Pock [4] presented a primal-dual algorithm that minimizes the sum of two functions
f1(x) + f2(Lx). The FBB-PD algorithm [5] can cope with the sum of three functions, one of which
involves L. The most general algorithm published by Condat [6,7] admits any finite number of
functions and any of them can involve a linear operator.

2.2. Proximal operators

Let R̃ denote the extended real line, i.e. R̃ = R ∪ {−∞, ∞}. Proximal operators are the key
components in proximal algorithms. Recall that the proximal operator of a function h : CN → R̃ maps
z ∈ CN to another vector in CN , such that [8,9]

proxh(z) = arg min
x∈CN

{
h(x) +

1
2
‖z− x‖2

2

}
. (1)

The proximal operator is a generalization of a projection operator onto a set — this fact is clear if we
identify h with the indicator function ιK of such a set K; in such a case [10],

h(x) = ιK(x) =

{
0 for x ∈ K

∞ for x 6∈ K.

For a convex h, the map (1) is uniquely defined [3]. A characterization of proximal operators of convex
lower semicontinuous functions is the work of J.-J. Moreau [8].

In this article, we will be interested in the proximal operator of the map f (L·), i.e. of such
a composition that now h(x) = ( f ◦ L)(x) = f (Lx), with L : CN → CM. If f is convex, then f ◦ L is
also convex, which is straightforward to show. Therefore, our goal is to find

prox f ◦L(z) = arg min
x∈RN

{
f (Lx) +

1
2
‖z− x‖2

2

}
. (2)

While explicit formulas exist for many functions h in (1), the situation gets complicated for the
compositions in (2).

In many practical situations, one can benefit from the following lemma, occurring, for example,
in [3, Tab. 10.1.x]. Let Id denote the identity operator, i.e. Id(x) = x; the possible subscript indicates the
dimensionality of x.

Lemma 1. Let L be a linear operator, L : RN → RM, such that LL> = ν IdM, ν > 0. Then

prox f ◦L = IdN + ν−1L> ◦ (proxν f − IdM) ◦ L. (3)

This property can be found (possibly including various styles of proof) in [1,9,11,12], but limited
to real space setting. The property says that to evaluate the composite proximal operator, it is sufficient
to know the proximal operator of f and to be able to perform L and L>. For an arbitrary z ∈ RN , this
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means prox f ◦L(z) = z + ν−1L>(proxν f (Lz)− Lz). The case LL> = ν Id corresponds to L being the
so-called tight frame (synthesis) operator known from the field of functional analysis [13–16]. Note
that as a consequence, it automatically holds M < N. Equation (3) drastically reduces the complexity
of computations when prox f is known. The tight frame acts the same way as an orthonormal operator
does.

Example 1. As an example, the projection onto an ellipsoid {z | ‖Lz− y‖2 ≤ δ} has to be computed iteratively
in general, however, when L is a tight frame, such a projection can be evaluated explicitly, using a simple
projection onto the ball {z | ‖z− y‖2 ≤ δ}.

Another, more common case of projection is the projection onto an affine subspace, see for example
[17]. The motivation for the following lemma is twofold: First, the described projection belongs to the
“family” of proximal operators we are considering, and second, this result will be later utilized in the
experiment. For the context, this lemma holds for any complex b, but on the other hand, its application
is limited to affine spaces only.

Lemma 2. Let L be any linear operator, L : CN → CM and b ∈ CM. Then the projection of a vector z ∈ CN

onto the affine space Γ = {u ∈ CN | Lu = b} can be expressed as

projΓ(z) = z + L+(b− Lz) . (4)

2.3. The new relation of projections

In this section, we present and prove the proposed property of the proximal operator of
a composite function. Let ∗ denote the adjoint of a bounded linear operator, for a matrix coinciding
with its Hermitian transpose.

First, two concepts known from matrix algebra are adopted. We do this to emphasize that
our result could be generalized to an infinite-dimensional setting (although below we work with
finite-dimensional spaces, for which a linear operator uniquely coincides with its matrix). Equalities in
the infinitedimensional spaces are understood “in norm”.

Definition 1. Let X, Y be Hilbert spaces and let L : X → Y be a continuous (bounded) linear operator. The
operator L is called full-rank if the range space of L is Y, i.e. if L is surjective.

Definition 2. A linear operator D defined on a Hilbert space X with basis {ek}k∈N is called diagonal if it holds

Dek = λkek for all k ∈ N, (5)

where λk are complex scalars.1

The same way as a diagonal matrix does, a diagonal operator performs entry-wise, since X 3
x = ∑k xkek and thus Dx = ∑k xkDek = ∑k(λkxk)ek. The novel projection utilizes the pseudoinverse
operator, which might be recalled now:

Lemma 3. The linear operator L : CN → CM, M ≤ N, full-rank, y ∈ RM. Then L+y is the least-norm
solution to the system Lx = y, i.e. ‖L+y‖2 ≤ ‖x‖2, for any x satisfying Lx = y. The pseudoinverse operator
L+ is in this full-rank case defined through L+ = L∗(LL∗)−1.

1 N. K. Nikolskii, B. S. Pavlov (originator): Diagonal operator. Encyclopedia of Mathematics. URL: http://www.
encyclopediaofmath.org/index.php?title=Diagonal_operator
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Lemma 4. Let there be the linear operator L : CN → CM, M ≤ N, full-rank, LL∗ diagonal. Let the
multidimensional interval bounds b1, b2 ∈ R̃M such that b1 ≤ b2. Then the projection of a vector z ∈ CN ,

projΓ(z) = arg min
u∈Γ

‖z− u‖2, (6a)

where Γ = {u ∈ CN | <(Lu) ∈ [b1, b2], =(Lu) = 0}, (6b)

can be evaluated as
projΓ(z) = z + L+

(
proj[b1,b2]

(Lz)− Lz
)

, (7)

where
proj[b1,b2]

(y) = min(max(b1,<(y)), b2) , y ∈ CM. (8)

Here, Eq. (8) is the projection of the complex vector onto a real multidimensional interval [b1, b2] with min and
max functions returning pairwise extremes entry-by-entry.

The proposed lemma says that the projection onto the box-type set Γ that involves L can be made
simpler and faster using projection onto the plain [b1, b2]. In (7), the application of L+ amounts to
entrywise multiplication by the inverse diagonal of LL∗, followed by L∗; therefore, the cost of L+ will
typically be in the order of the cost of L∗.

Before we prove Lemma 4, we present several lemmas that will be needed later.

Lemma 5. Let L : CN → CM, M ≤ N, full-rank, LL∗ diagonal. Then (L+)∗L+ is diagonal.

Proof. The operator L is full-rank and therefore its pseudoinverse can be computed as in Lemma 3.
Then

(L+)∗L+ =
(
(LL∗)−1

)∗
LL∗ (LL∗)−1 =

(
(LL∗)−1

)∗
= (LL∗)−1, (9)

which is the inverse of the diagonal operator LL∗, and thus it is diagonal as well.

Lemma 6. Given any linear operator L : CN → CM and vector y ∈ CN , the vector L+Ly ∈ CN is the
shortest vector that is mapped by L to Ly.

Proof. Consider the linear system Lx = Ly with y fixed. Using the properties of the pseudoinverse
(Lemma 3), the shortest solution to such a system is found by pseudoinverting the right hand side, i.e.
by L+(Ly).

Lemma 7. Let W : CM → CN be such an operator that W∗W is diagonal and let x, y ∈ CM. Then from
|xm| ≤ |ym| , ∀m, it follows that ‖Wx‖2 ≤ ‖Wy‖2.

Proof. Let {en} be an orthonormal basis of CN . Then, since W∗W is a diagonal operator, according to
Definition 2 we have W∗Wem = λmem for a set of scalars {λm}, which in this case are real nonnegative
thanks to the positive semidefiniteness of W∗W. Now ‖Wx‖2

2 = 〈Wx, Wx〉 = 〈W∗Wx, x〉 using the
basic property of the adjoint operator. Thus for x = ∑m xmem, it holds

‖Wx‖2
2 = 〈W∗W ∑

m
xmem, ∑

m
xmem〉 = 〈∑

m
xmW∗Wem, ∑

m
xmem〉 = 〈∑

m
xmλmem, ∑

m
xmem〉 = ∑

m
λm |xm|2 ,

where in the last equality we have used the linearity of inner product and the orthonormality of
{em}. If |xm| ≤ |ym|, then also their squares satisfy |xm|2 ≤ |ym|2 for each m and therefore ‖Wx‖2

2 =

∑m λm |xm|2 ≤ ∑m λm |ym|2 = ‖Wy‖2
2, since all λm are nonnegative.

Proof of Lemma 4. First of all, we will show that (8) is indeed a projector onto [b1, b2]. Due to
the fact that the set [b1, b2] is a multidimensional box (although possibly open towards plus or
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Figure 1. Illustration of the inequality (14) for different cases of the relative position of Lz and the
interval [b1, b2]. Only a single entry is depicted for each vector, i.e. the meaning of Lz in the plot is
(Lz)m and similarly for the other vectors. The point L(z − v′) represents an arbitrary point in the
interval [b1, b2], as assumed.

minus infinity), the projection proj[b1,b2]
(y) can be evaluated entry-by-entry. Consider the m-th entry

ym =: y, (b1)m =: b1, (b2)m =: b2. In accordance with the definition of projection,

proj[b1,b2]
(y) = arg min

b1≤x≤b2

|x− y| = arg min
b1≤x≤b2

√
(x−<(y))2 +=(y)2

= arg min
b1≤x≤b2

(
(x−<(y))2 +=(y)2

)
= arg min

b1≤x≤b2

|x−<(y)|, (10)

i.e. the original task reduces to projecting <(y) onto [b1, b2]. We prove (8) by evaluating the only three
possibilities (for a single entry but applied to all of them):

proj[b1,b2]
(y) = min(max(b1,<(y)), b2) =


b1 for <(y) < b1,

b2 for <(y) > b2,

y for b1 ≤ <(y) ≤ b2.

(11)

Now return to formula (7). Suppose that z ∈ Γ; then <(Lz) ∈ [b1, b2] and from (8) we have
proj[b1,b2]

(Lz) = Lz and from (7) we get projΓ(z) = z, which is correct. In the complementary case,
z /∈ Γ, due to the fullrank of L, there exists at least one v ∈ CN for which

Lv = Lz− proj[b1,b2]
(Lz) =: w. (12)

Trivially, any such vector v satisfies L(z− v) = proj[b1,b2]
(Lz) ∈ [b1, b2]. In line with (6a), we are

looking for the shortest v, which is found using the pseudoinverse:

v+ := L+w. (13)

Suppose now that there is another vector v′ ∈ CN such that L(z− v′) ∈ [b1, b2]. We will show that
‖v′‖2 ≥ ‖v+‖2. The projection (8) is performed entrywise and thus it must hold

|wm| ≤ |(Lv′)m| for m = 1, . . . , M, (14)

see Fig. 1 for illustration. From Lemma 5 it follows that (L+)∗L+ is diagonal. Therefore, using Lemma 7
we have

‖v+‖2 = ‖L+w‖2 ≤ ‖L+(Lv′)‖2. (15)

Finally, Lemma 6 states that ‖L+(Lv′)‖2 ≤ ‖v′‖2, which together with Eq. (15) concludes the proof.

3. Discussion on the new result

Our Lemma 4 allows us to cover a broader scope of operators than Lemma 1 does. Specifically,
L can be an arbitrary complex operator, and, moreover, LL∗ can be diagonal, not just a multiple of the
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identity. On the other hand, the generalized relation holds only for an projector onto a box-type set
and not for a generic proximal operator.

Example 1 showed that projecting onto an ellipsoid could be performed fast in the special case of
LL∗ = ν Id. In the case of the diagonal LL∗, this is no longer possible.

Remark 1. Lemma 4 clearly holds when L is the synthesis operator of a tight frame (in such a case, LL∗ =
ν Id is a multiple of the identity). The property is still valid when such a synthesis operator is weighted
column-by-column by a diagonal operator D that is real and positive. Substituting DL for L still meets the
assumptions of the theorem, since (DL)(DL)∗ = DLL∗D∗ = νDD∗, which is again diagonal.

Remark 2. On the contrary, consider that L is an analysis operator. First of all, LL∗ cannot be diagonal (while
actually LL∗ is diagonal); even if such a condition in the assumption is disregarded, the theorem still cannot be
formulated for such L. The problem appears early in the proof, in (12). This linear system does not need to have
any solution v for fixed z, and therefore by using (8), we do not obtain a vector in Γ.

Remark 3. It is clear that if we choose L full-rank, but not obeying that LL∗ is diagonal, the proof is ruined
in Eq. (15), since Lemmas 7 and 5 cannot be used. In such a situation, formula (7) clearly provides a feasible
solution to the problem (6), but it is not guaranteed to be the optimal one.

Remark 4. Consider the common discrete Fourier transform (DFT). The related synthesis and analysis operators,
L and L∗, respectively, are complex; however, recall that they have a special complex-conjugate structure, such
that when x is a real signal, then LL∗x = x is real again, while L∗x bears the same complex-conjugate structure.
In such a case, when the coefficient vector z is fed into (7), Lz is real and so is its projection proj[b1,b2]

(Lz). Thus,
L+ is applied to a real vector. Since LL∗ = Id for the DFT, it follows that the pseudoinverse L+ = L∗ = L−1

bears the structure of L∗. As a consequence, the resulting projection is also complex-conjugate. Therefore, in
theory, taking the real part in (8) is redundant for the DFT. It will be shown later that this feature will be kept for
time-frequency operators that will be used in the experiment.

4. Experiment

The so-called clipping is an artefact occurring in signal acquisition or processing, when the dynamic
range of a signal is larger than the representation range of a device which is used to record or process
the signal. In audio processing, this typically happens when an analog signal is captured with an
analog-to-digital converter whose pre-amplifier is set such that the largest signal values are beyond
the maximum digital representation level. Clipping is a psychoacoustically annoying effect, and it
introduces a plenty of unwanted higher harmonic components to the signal.

The process of restoring as much audio information as possible, based on the degraded signal, is
usually called declipping. Such a restoration task is clearly ill-conditioned, since there are infinitely many
possible solutions to the problem. Declipping methods thus have to rely on additional information
that characterizes the signal.

Besides other types of signal modeling [18–22], sparse priors have recently become very popular.
Such a type of regularization assumes that the signal can be well approximated by only a few synthesis
coefficients. As the transforms, the cosine (DCT, MDCT) [23,24] or the short-time Fourier transform
(STFT) [25,26] are typically used. Since finding truly sparse solutions is NP-hard, various strategies
are used to approximate the solution. Two major groups of algorithms can be identified: the greedy
algorithms [27–31] and the convex-relaxation algorithms [25,26,32], or algorithms combining both
approaches [24].

In our experiment, a convex formulation of the declipping problem is utilized with (synthesis)
sparsity in the STFT (also termed Gabor) domain. It is shown that when the Gabor frame fulfills the
requirements of Lemma 4, as a consequence the projection onto the time-domain constraints can be
done in a single step, leading to the use of a simple algorithm and speeding up the convergence by
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a factor of 2–3. We show the benefit of our novel projection on a simple declipping model, being aware
that more sophisticated models cited above lead to a better quality of reconstruction.

4.1. Problem formulation

It is assumed that a discrete-time signal yc ∈ RM is given that has been hard-clipped, i.e. any
original time-domain sample above the clipping level θH has been substituted by θH and analogously
for the samples below the level θL. The rest of the samples in yc have not been altered by clipping, and
they will be called reliable.

It is furthermore assumed that the unknown original signal y is sparse or compressible in the
SFTF domain, formally written as y ≈ Gc with ‖c‖0 � N, where G is the linear Gabor synthesis
operator [33], and where the pseudo-norm ‖c‖0 counts the non-zero elements of c. This is a natural
model, since it is known that human perception is based on a kind of time-frequency analysis [13,16].
In this paper we utilize the `1-norm as a convex surrogate of the sparsity pseudo-norm [34] and we
formulate the optimization problem as

arg min
c
‖c‖1 subject to


MRGc = MRyc (reliable samples)

MHGc ≥ θH (samples clipped from above)

MLGc ≤ θL (samples clipped from below),

(16)

where MR, MH, ML are simple projection operators (masks) selecting only samples related to the
reliable and the clipped parts, respectively, from the complete set of indexes {1, . . . , M}. Formulation
(16) thus looks for coefficients that are approximately sparse and at the same time generate a signal
that is consistent with the time-domain constraints.

4.2. The Gabor operators

As a prelude to Gabor operators, return to the ordinary DFT. The DFT analysis, F∗ : CM → CQ,
computes scalar products of the signal with complex exponentials

1√
Q

[
exp

(
i2π0

q
Q

)
, exp

(
i2π1

q
Q

)
, . . . , exp

(
i2π(M− 1)

q
Q

)]>
(17)

for each frequency q = 0, . . . , Q− 1. Following Remark 4, we now recall that the DFT operator takes
the real signal into the complex domain of dimension Q such that the image has a complex-conjugated
structure. To make this statement precise, F∗ : RM → KQ, where we define

KQ =

{
c ∈ CQ | c0, c Q

2
∈ R; cq = cQ−q, q = 1, . . . ,

Q
2
− 1
}

. (18)

Such a structure follows immediately from (17). In the common DFT case, Q = M, which implies that
(17) is an orthonormal basis of CM, and thus F∗ = F−1. Nevertheless the relation between coefficients
holds true also in the case Q > M (with Q even) in (17), which is referred to as the overcompleteness
in frequency and sometimes the redundant DFT. In such a situation, the complex exponentials form
a Parseval tight frame of CM [33]. Both cases can be computed using the FFT.

The Gabor transform is a time-frequency transform with an extra structure compared to the DFT.
Gabor analysis G∗ of a signal consists of windowing the time-domain signal and then taking scalar
products of such windowed signal with complex harmonics (17); effectively, G∗ amounts in computing
the FFT of the windowed signal. Generally, G∗ : CM → CN , N > M and the other way round for the
synthesis G. The window moves along the signal.

Conditions are known which guarantee that the frame operator GG∗ is invertible. Under
additional conditions, the related synthesis operator G moreover bears the same time-frequency
structure as G∗ does [13]. From the practical point of view, systems for which GG∗ = ν IdM are
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preferably used in applications, see for example [16,29,35–39], however let us note that the assumptions
of our lemma, in addition, cover an important class of the so-called painless Gabor transforms [40], for
which the operator GG∗ is diagonal and not constant. Gabor Parseval tight frames thus fall into our
setup as a special case.

For the Gabor transform, parameters have to be specified such as the window shape and length,
time-shift a of the window, and the number of frequency channels Q [13]. The number of time samples
M must be a multiple of a [41]; then the analysis operator is G∗ : RM → CMQ/a. Thanks to the
above-described structure of the DFT analysis, it is clear that we can even understand the operator as
G∗ : RM → KQ× . . .×KQ, where each of the vectors from KQ originates in one of the M/a possible
window positions. The synthesis G : KQ× . . .×KQ → RM produces a real signal again. It will be
clear later that computations in the algorithms do not tackle the coefficients in such a way that they
would fall out of the space KQ× . . .×KQ, making it possible to omit the real-part operator in (8).

4.3. Problem solution

We will use the so-called proximal splitting algorithms to solve (16). Proximal splitting algorithms
were introduced in Sec. 2. First of all, it will be convenient to rewrite (16) to an unconstrained form
using indicator functions (defined in Sec. 2) as

arg min
c∈CN

‖c‖1 + ιR(c) + ιH(c) + ιL(c) (19)

where the sets R, H, L coincide with the three conditions in (16), i.e. they are

R = {c |MRGc = MRyc}, H = {c |MHGc ≥ θH}, L = {c |MLGc ≤ θL}. (20)

Once optimal coefficients are found, signal recovery is simply obtained by their synthesis through G.
Eq. (19) presents a sum of convex functions, considering the fact that the sets R, H, L are convex.

Therefore, (19) is suitable to be solved by a proximal algorithm.
Recall that proximal algorithms rely on evaluating the so-called proximal operators linked to the

functions present in the sum. It is known that the proximal operator of ‖ · ‖1 is the soft thresholding
[42–44] and that the proximal operator of ιK is the projection onto the convex set K [3,10]. Performing
soft thresholding is a simple operation, but regarding projections onto the sets R, H, L, it becomes more
complicated. Explicit formulas for projecting onto these sets are known only for G being an unitary
operator or a tight frame (GG∗ = ν IdM) defined in real domain, see Lemma 1. Our G, however, maps
CN → RM and moreover there are practical Gabor systems for which GG∗ is only diagonal [13,40].

In this experiment, we compare two approaches to overcome this complication. One is to adapt
the general Condat algorithm (CA) which allows us to simplify the projections at the cost of an
additional application of G and G∗ in each iteration. In the second approach, we utilize the novel
projection lemma and show its superiority over the first choice.

4.4. Condat algorithm

Problem (19) is equivalent to

arg min
c
‖c‖1 + ιR(c) + ιH′(Gc) + ιL′(Gc) (21)

where H′ = {z |MHz ≥ θH} and L′ = {z |MLz ≤ θL}. Note that projection onto such sets is trivial
compared to projections onto H and L. Regarding the reliable part of the signal, we could also resort
to replacing ιR(c) by ιR′(Gc), where projecting onto R′ = {z |MRz = MRyc} amounts to simple
substitution of z with yc at the reliable positions. Note, however, that R is an affine set and there exists
an explicit formula for the respective projection, see Lemma 2. In our setup, this lemma renders the
following corollary.
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Algorithm 1: Condat algorithm adapted to solving (21)

Input: Set starting points c(0), u(0)
R , u(0)

H , u(0)
L .

Set parameters ρ ∈ (0; 2), σ, τ > 0.
for i = 0, 1, . . . do

Combine coefficients and sparsify them:

c̃(i+1) = softτ

(
c(i) − τ

(
u(i)

R + G∗u(i)
H + G∗u(i)

L

))
c(i+1) = ρ c̃(i+1) + (1− ρ)c(i)

Project reliable:

vR = u(i)
R + σ

(
2c̃(i+1) − c(i)

)
% auxiliary variable

ũ(i+1)
R = vR − σ projR (vR/σ) % using (22)

u(i+1)
R = ρ ũ(i+1)

R + (1− ρ)u(i)
R

Project clipped from above:

vH = u(i)
H + σ G

(
2c̃(i+1) − c(i)

)
% auxiliary variable

ũ(i+1)
H = vH − σ projH′ (vH/σ) % elementwise projection

u(i+1)
H = ρ ũ(i+1)

H + (1− ρ)u(i)
H

Project clipped from below:

vL = u(i)
L + σ G

(
2c̃(i+1) − c(i)

)
% auxiliary variable

ũ(i+1)
L = vL − σ projL′ (vL/σ) % elementwise projection

u(i+1)
L = ρ ũ(i+1)

L + (1− ρ)u(i)
L

return c(i+1)

Corollary 1. Let G be a linear synthesis operator, G : CN → CM such that GG∗ is diagonal. Let MR be the
“reliable” mask operator. Then for the projection onto R we have

projR(z) = z + G∗M>R (MRGG∗M>R )−1(MRyc −MRGz). (22)

Proof. We use Lemma 2 in the particular case of the diagonal product. The role of L is played by
MRG. The only step to comment on is the determination of the pseudoinverse operator. Recall that G
is assumed full-rank; therefore, MRG spans the subspace onto which it projects, since MR is applied
elementwise. Therefore we can use the formula mentioned in Lemma 3 and obtain

(MRG)+ = (MRG)∗(MRGG∗M∗R)
−1 = G∗M>R (MRGG∗M>R )−1. (23)

Formula (22) follows immediately.

Formula (22) employs application of one synthesis and one analysis. Note that (MRGG∗M>R ) is
a square diagonal matrix whose size equals the number of reliable samples, and as such, its inversion
is simple and can be precomputed.

The complete Condat algorithm for declipping is described in Alg. 1. The convergence is
guaranteed when the step sizes τ and σ satisfy τσ‖Id + G∗G + G∗G‖ ≤ 1, where ‖ · ‖ is the operator
norm [6]. With the help of the triangle inequality we find a (suboptimal) bound for the step sizes. Since
GG∗ is diagonal and it holds ‖L∗L‖ = ‖LL∗‖ for any operator, we have ‖G∗G‖ = max diag|GG∗| =: µ.
Thus, τσ ≤ 1/(1 + 2µ) ensures convergence; for Parseval frames, it simplifies to τσ ≤ 1/3. Still, the
choice of particular σ and τ influences the convergence speed.

In practice, we terminate the main loop when a proper convergence criterion is fulfilled (will be
discussed later). Usually, when the algorithm stops, the solution might happen to lie slightly out of the
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Algorithm 2: Douglas-Rachford algorithm solving (24)

Input: Set starting point c(0).
Set parameters λ = 1, γ > 0.
for i = 0, 1, . . . do

c̃(i) = projK c(i) % using (26) and (27)

c(i+1) = c(i) + λ
(

softγ(2c̃(i) − c(i))− c̃(i)
)

return c(i+1)

feasible set. Therefore, we normally perform a final projection of the current solution onto the feasible
set. (This applies also to the second algorithm below.)

The advantage of the Condat algorithm is its universality; it would work for audio declipping
with arbitrary (meaningful) linear operator G. In the following, however, we exploit the special
properties of G which are assumed.

4.5. Douglas-Rachford algorithm

Now we approach the problem (19) directly. Notice that it could be rewritten as a sum of two
convex functions

arg min
c
‖c‖1 + ιK(c) (24)

with K = {z |MRGz = MRyc, MHGz ≥ θH, MLGz ≤ θL}. Due to such a form, the simple
Douglas-Rachford (DR) algorithm [1,3] can be applied to solve (24), if the projector onto K is available.
We use our new lemma to develop such a projector.

First, define the “lower” and “upper” bounding vectors bL, bH ∈ R̃M such that for m = 1, . . . , M,

(bL)m =


(yc)m for θL < (yc)m < θH,

θH for (yc)m = θH,

−∞ for (yc)m = θL,

(bH)m =


(yc)m for θL < (yc)m < θH,

∞ for (yc)m = θH,

θL for (yc)m = θL.

(25)

Note that defining the multidimensional box [bL, bH] this way matches the set of feasible solutions K.
Specifically, we have K = {c | bL ≤ Gc ≤ bH}. Due to Lemma 4, the projection onto K is realized via

projK(c) = c + G+
(

proj[bL,bH](Gc)− Gc
)

, (26)

where
proj[bL,bH](Gc) = min(max(bL,<(Gc)), bH) . (27)

The Douglas-Rachford algorithm is presented in Alg. 2. It always converges, nevertheless the
parameter γ is responsible for the convergence speed.

4.6. Comparison of the algorithms

If converged, both the presented algorithms produce the same solution when the objective
function is strictly convex. In our case, (19) is not strictly convex, and therefore we cannot hope for the
same solution. The objective function, i.e. the `1-norm of coefficients, should coincide, however.

Regarding the computational cost, the CA requires, per iteration:

• Sparsifying step: one soft thresholding, which is performed elementwise, and thus it is O(N),
and one analysis G∗, which is O(N log N)

• Reliable part: one synthesis G and one analysis G∗, both O(N log N)
• Each of the clipped parts: one synthesis, O(N log N), and one elementwise projection, O(N).
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We neglect simple addition of vectors and multiplication of a vector with a scalar, and it is assumed
that, where applicable, parts of the formulas are precomputed. It is clear that the overall cost is
dominated by the transforms, namely every iteration requires three applications of G and two of G∗.

On the other hand, the DR requires:

• Sparsifying step: one soft thresholding, which is O(N)
• Projection onto K: one synthesis G and one pseudoinverse G+, which is in the order of G∗, i.e.
O(N log N) in our particular setup; projection that is performed elementwise, O(N).

Again, the overall cost is dominated by the transforms, but we can see that the DR is much less
demanding per iteration. Notice that this does not automatically mean that it will converge faster. We
provide an experiment on this issue later.

The CA is a primal-dual method and needs more memory than the DR does. The exact factor
depends on the redundancy of the transform G∗, i.e. on the ratio of M and N.

The practical advantage of the DR lies also in the fact that only one step size has to be hand-tuned
instead of two in the CA.

4.7. Redundancy of the real-part operator

The operator <(·) can be omitted in (8) and (27) if its argument is real. As mentioned several
times before, if the coefficient vector c ∈ (KQ× . . .×KQ) ⊂ (CQ× . . .×CQ), then the synthesis Gc is
real. It remains to check whether there exists an operation in any of the above algorithms that would
make the coefficients fall out of this subspace: The soft thresholding is harmless in this regard. In the
consolidated projection (26), G+ = G∗(GG∗)−1 has the same complex-conjugate structure as G∗ since
GG∗ is a real diagonal matrix, according to the assumption. In the projection (22) onto the reliable set,
it is straightforward to see that if the input coefficients belong to KQ× . . .×KQ, then the same holds
for the output, since (MRGG∗M>R ) is a real diagonal matrix.

4.8. Results

For the following experiments, five audio excerpts sampled at 16 kHz with length of approximately
5 seconds were chosen. Because the goal of the experiments is to demonstrate the convenience of the
proposed projector in a practical example, rather than developing a novel method for audio declipping
outperforming the current state-of-the-art, these audio excerpts are fully sufficient for this purpose.
Used signals differ in tonal content and sparsity with respect to the used time-frequency representation
to cover a wide spectrum of audio signals; they consists of recordings of acoustic guitar, double bass,
artificial signature tone, speech and string orchestra.

As a preprocessing step, the signals were peak-normalized and then artificially clipped to multiple
thresholds θc ∈ {0.3, 0.5, 0.7}. The clipping is considered to be symmetric, i.e. θc = θH = −θL.

Regarding the used transform, the common setting for audio declipping on 16 kHz sampled
signals was adopted, i.e. the Gabor transform (STFT) with 1024 samples long Hann window
(corresponding to 64 ms) and a 75% overlap. In all the cases, the number of frequency channels
is the same as the window length, i.e. Q = 1024, except for the experiment shown in Fig. 5, where the
number of frequency channels was twice as many as the window length, specifically 2048 channels. In
both the settings it holds GG∗ = Id.

It has been noticed that the convergence performance of Alg. 1 and Alg. 2 is influenced by the
setting of parameters. These parameters were manually tuned such that both declipping algorithms
performed well for all testing audio excerpts and all clipping thresholds. Specifically, the parameters
of the CA were set to τ = 0.5 and σ = 0.666 and the DR parameter γ was set to 1.

The results are evaluated using ∆SDR, the signal-to-distortion ratio improvement, which is the
difference between SDR of the restored signal and SDR of the clipped signal. Formally:

∆SDR = SDR(y, ŷ)− SDR(y, yc), (28)
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where y denotes the original (undistorted, ground-truth) signal, ŷ represents the restored signal and
yc the clipped signal, while the SDR is the standard ratio computed as

SDR(u, v) = 10 log10
‖u‖2

2
‖u− v‖2

2
[dB]. (29)

Figures 2 and 3 are designed to demonstrate how the Condat algorithm and the Douglas-Rachford
algorithm act over time, therefore the development of the ∆SDR and the objective function (`1-norm of
the coefficients c) for both the algorithms are presented in these figures. Whereas Fig. 2 displays only
data obtained from reconstructing the “acoustic guitar” excerpt clipped at the level of 0.3, Fig. 3 uses
the average of all five audio signals and three tested clipping thresholds. It can be concluded from
the figures that the objective function somewhat correlates with the ∆SDR curve and both cases show
that both algorithms converge to the solution with the same final objective function value, but the DR
algorithm converges faster, i.e. the curves level up faster reaching slightly higher ∆SDR value. This is
caused most likely by the projection step, where in the CA, there are three individual projections (onto
R, H and L) combined in a sum, thus it is not as accurate as in the DR case, where the projection step
(26) is exploited.

Since the horizontal axis was converted to time in seconds in the figures, they also offer an
overview of the number of iterations, which is handy since the iterations of CA and DR do not
consume the same amount of time. For this reason, apart from the ∆SDR and objective function graphs,
the (+ and ×) markers emphasizing every 100th iteration are also displayed in the plots. Note that
although both algorithms run for exactly 1000 iterations, since the time axis is limited to 26 seconds,
only 570 iterations of the Condat algorithm are shown in Fig. 2, and 581 iterations in Fig. 3.

The average computational times for all sound excerpts and all computed clipping thresholds
with a fixed number of 1000 iterations were 44.73 seconds for the CA and 23.82 seconds for the DR.

More detailed time comparison of both algorithms can be seen in Figs. 4 and 5 where the time
ratio (time of DR divided by the time of CA) is plotted for every sound excerpt and clipping threshold
θc combination. Here both algorithms ran until the objective function differed by 0.1 % from the state
of full convergence, which assessment was determined to be reached after exactly 3000 iterations. With
the average value of the plotted time ratios being ca 0.53, it is possible to claim that the DR algorithm
is about twice as fast as the CA.

Fig. 5 presents the same time ratios as Fig. 4 with only one difference—the number of frequency
channels of the Gabor transform is set to 2048 instead of 1024. The average value of the time ratio is
now around 0.42. It can be assumed that the more DGT coefficients we will work with (either longer
windows, bigger overlaps or more frequency channels), the more significant time difference between
the two algorithms there will be.

The algorithms were implemented and tested in MATLAB R2017a using the LTFAT toolbox [45]
and supporting the idea of reproducible research, the codes are available at

http://www.utko.feec.vutbr.cz/~rajmic/software/project_accel_declip.zip
All the experiments ran on a PC with Intel i7-3770 3.4 GHz, 24 GB RAM and OS Windows 10 Pro
(version 1809).

5. Conclusion

A new projector onto a box-shaped convex set in the transformed domain has been presented in
this article. The projector forms a generalization of previous results and its use was demonstrated on
a simple audio signal declipping task.

Author Contributions: Conceptualization and methodology, P.R.; formal analysis, V.V. and O.M.; software,
experiments, visualization of results, P.Z.; draft preparation, review and editing, P.R., V.V., P.Z. and O.M.
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Figure 2. Development of the ∆SDR (blue) and objective function (orange) through iterations for the
particular “acoustic guitar” excerpt and the clipping threshold θc = 0.3. Both algorithms run for a fixed
number of 1000 iterations here. To demonstrate the time differences between the algorithms, every
100th iteration is emphasized with a marker (+ for Condat and × for Douglas-Rachford).
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Figure 3. Analog to Fig. 2, development of the ∆SDR (blue) and objective function (orange) through
iterations is shown, but now averaged over the testing sounds and the clipping thresholds. The number
of iterations was 1000.
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Figure 4. Relative elapsed time, Douglas-Rachford versus Condat algorithm, for all testing sounds
and clipping thresholds. Both the algorithms were first let to fully converge, which was in practice
observed after 3000 iterations. Then, both algorithms ran again until the objective function differed by
0.1 % from the respective solutions. The Gabor transform with 1024 samples long Hann window and
1024 frequency channels with 75 % overlap was used.
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Figure 5. Analog to Fig. 4, this picture presents relative running times of the Douglas-Rachford versus
Condat algorithm. The only difference is that the Gabor transform now used 2048 frequency channels.
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Abbreviations

The following abbreviations are used in this manuscript:

CA Condat Algorithm
DCT Discrete Cosine Transform
DGT Discrete Gabor Transform
DR Douglas-Rachford (algorithm)
MDCT Modified Discrete Cosine Transform
PA Proximal Algorithm
SDR Signal-to-Distortion Ratio
STFT Short-Time Fourier Transform
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27. Kitić, S.; Jacques, L.; Madhu, N.; Hopwood, M.; Spriet, A.; De Vleeschouwer, C. Consistent iterative
hard thresholding for signal declipping. Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, 2013, pp. 5939–5943. doi:10.1109/ICASSP.2013.6638804.
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45. Průša, Z.; Søndergaard, P.L.; Holighaus, N.; Wiesmeyr, C.; Balazs, P. The Large Time-Frequency Analysis
Toolbox 2.0. In Sound, Music, and Motion; Aramaki, M.; Derrien, O.; Kronland-Martinet, R.; Ystad,
S., Eds.; Lecture Notes in Computer Science, Springer International Publishing, 2014; pp. 419–442.
doi:{10.1007/978-3-319-12976-1_25}.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2019                   doi:10.20944/preprints201903.0093.v1

Peer-reviewed version available at Axioms 2019, 8, 105; doi:10.3390/axioms8030105

https://doi.org/10.1063/1.527388
https://doi.org/10.1142/S0219691312500324
https://doi.org/10.1109/ICECS.2003.1301820
https://doi.org/{10.1007/978-3-319-12976-1_25}
http://dx.doi.org/10.20944/preprints201903.0093.v1
https://doi.org/10.3390/axioms8030105

	Introduction
	Materials and Methods
	Proximal algorithms
	Proximal operators
	The new relation of projections

	Discussion on the new result
	Experiment
	Problem formulation
	The Gabor operators
	Problem solution
	Condat algorithm
	Douglas-Rachford algorithm
	Comparison of the algorithms
	Redundancy of the real-part operator
	Results

	Conclusion
	References

