Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Impact of Conductive Yarns on Embroidery Textile Moisture Sensor

Version 1 : Received: 31 January 2019 / Approved: 1 February 2019 / Online: 1 February 2019 (09:46:48 CET)

A peer-reviewed article of this Preprint also exists.

Martínez-Estrada, M.; Moradi, B.; Fernández-Garcia, R.; Gil, I. Impact of Conductive Yarns on an Embroidery Textile Moisture Sensor. Sensors 2019, 19, 1004. Martínez-Estrada, M.; Moradi, B.; Fernández-Garcia, R.; Gil, I. Impact of Conductive Yarns on an Embroidery Textile Moisture Sensor. Sensors 2019, 19, 1004.

Abstract

In this work, two embroidered textile moisture sensors are characterized with three different conductive yarns. The sensors are based on a capacitive interdigitated structure embroidered on a cotton substrate with an embroidered conductor yarn. The performance comparison of 3 different type of conductive yarns has been addressed. In order to evaluate the sensor sensitivity, the impedance of the sensor has been measured by means of a LCR meter from 20 Hz to 20 kHz on a climatic chamber with a sweep of the relative humidity from 30% to 65% at 20 ºC. The experimental results show a clear and controllable dependence of the sensor impedance with the relative humidity and the used conductor yarns. This dependence points out the optimum conductive yarn to be used to develop wearable applications for moisture measurement.

Keywords

sensor; e-textile, embroidery, moisture, capacitive.

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.