Preprint Article Version 1 This version is not peer-reviewed

Synthesis of Solution-Stable PEDOT-Coated Sulfonated Polystyrene Copolymer PEDOT:P(SS-co-St) Particles for All-Organic NIR-Shielding Films

Version 1 : Received: 27 January 2019 / Approved: 29 January 2019 / Online: 29 January 2019 (04:51:28 CET)

A peer-reviewed article of this Preprint also exists.

Im, S.; Park, C.; Cho, W.; Kim, J.; Jeong, M.; Kim, J.H. Synthesis of Solution-Stable PEDOT-Coated Sulfonated Polystyrene Copolymer PEDOT:P(SS-co-St) Particles for All-Organic NIR-Shielding Films. Coatings 2019, 9, 151. Im, S.; Park, C.; Cho, W.; Kim, J.; Jeong, M.; Kim, J.H. Synthesis of Solution-Stable PEDOT-Coated Sulfonated Polystyrene Copolymer PEDOT:P(SS-co-St) Particles for All-Organic NIR-Shielding Films. Coatings 2019, 9, 151.

Journal reference: Coatings 2019, 9, 151
DOI: 10.3390/coatings9030151

Abstract

We prepared poly(3,4-ethylenedioxythiophene) (PEDOT)-coated sulfonated polystyrene copolymer particles as efficient heat-shielding agents, which showed strong near-infrared (NIR) absorption, with high solid contents and good solution stability. The poly(styrene sulfonate -co-styrene) (P(SS-co-St)) copolymers were successfully synthesized via radical solution polymerization, and PEDOT-coated P(SS-co-St) (PEDOT:P(SS-co-St)) was synthesized via Fe+-catalyzed oxidative polymerization. PEDOT:P(SS-co-St) was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopies. The particle size and morphology of PEDOT:P(SS-co-St) were examined using transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The maximum NIR-shielding efficiency of the film was 92.0% with 40% transmittance. The high solution stability of PEDOT:P(SS-co-St) make it an ideal candidate for heat-insulating materials that find application in semi-transparent heat-insulator-coated windows.

Subject Areas

conducting polymer; poly(3,4-ethylenedioxythiophene); PEDOT; core-shell particles; polystyrene; NIR shielding film

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.