Preprint
Article

This version is not peer-reviewed.

Wind Turbine Maintenance Cost Reduction by Deep Learning Aided Drone Inspection Analysis

A peer-reviewed article of this preprint also exists.

Submitted:

24 January 2019

Posted:

28 January 2019

You are already at the latest version

Abstract
Timely detection of surface damages on wind turbine blades is imperative for minimising downtime and avoiding possible catastrophic structural failures. With recent advances in drone technology, a large number of high-resolution images of wind turbines are routinely acquired and subsequently analysed by experts to identify imminent damages. Automated analysis of these inspection images with the help of machine learning algorithms can reduce the inspection cost, thereby reducing the overall maintenance cost arising from the manual labour involved. In this work, we develop a deep learning based automated damage suggestion system for subsequent analysis of drone inspection images. Experimental results demonstrate that the proposed approach could achieve almost human level precision in terms of suggested damage location and types on wind turbine blades. We further demonstrate that for relatively small training sets advanced data augmentation during deep learning training can better generalise the trained model providing a significant gain in precision.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated