Preprint
Article

This version is not peer-reviewed.

Distributed Orbit Determination for Global Navigation Satellite System with Inter-Satellite Link

A peer-reviewed article of this preprint also exists.

Submitted:

22 January 2019

Posted:

24 January 2019

You are already at the latest version

Abstract
To keep the global navigation satellite system functional during extreme conditions, it is a trend to employ autonomous navigation technology with inter-satellite link. As in the newly built BeiDou system (BDS-3) equipped with Ka-band inter-satellite links, every individual satellite has the ability of communicating and measuring distances among each other. The system also has less dependence on the ground stations and improved navigation performance. Because of the huge amount of measurement data, centralized data processing algorithm for orbit determination is suggested to be replaced by a distributed one in which each satellite in the constellation is required to finish a partial computation task. In current paper, the balanced extended Kalman filter algorithm for distributed orbit determination is proposed and compared with whole-constellation centralized extended Kalman filter, iterative cascade extended Kalman filter, and increasing measurement covariance extended Kalman filter. The proposed method demands a lower computation power however yields results with a relatively good accuracy.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated