Preprint Article Version 1 This version is not peer-reviewed

Raman Tweezers as a Tool for Small Microplastics and Nanoplastics Identification in Sea Water

Version 1 : Received: 21 January 2019 / Approved: 22 January 2019 / Online: 22 January 2019 (18:00:37 CET)

How to cite: Gillibert, R..; Balakrishnan, G..; Deshoules, Q..; Tardivel, M..; Magazzù, A..; Donato, M.G.; Marago, O.M..; Lamy de La Chapelle, M.; Colas, F..; Lagarde, F..; Gucciardi, P.G. Raman Tweezers as a Tool for Small Microplastics and Nanoplastics Identification in Sea Water. Preprints 2019, 2019010227 (doi: 10.20944/preprints201901.0227.v1). Gillibert, R..; Balakrishnan, G..; Deshoules, Q..; Tardivel, M..; Magazzù, A..; Donato, M.G.; Marago, O.M..; Lamy de La Chapelle, M.; Colas, F..; Lagarde, F..; Gucciardi, P.G. Raman Tweezers as a Tool for Small Microplastics and Nanoplastics Identification in Sea Water. Preprints 2019, 2019010227 (doi: 10.20944/preprints201901.0227.v1).

Abstract

Our understanding of the fate and distribution of micro- and nano- plastics in the marine environment and their impact on the biota compartment is limited by the intrinsic difficulties of conventional analytical techniques (light scattering, FT-IR, Raman, optical and electron microscopies) in the detection, quantification and chemical identification of small particles in liquid samples. Here we propose the use of optical tweezers, a technique awarded in 2018 with the Nobel prize, as an analytical tool for the study of micro- and nano- plastics in sea water. In particular, we exploit the combination of optical tweezers with Raman spectroscopy (Raman Tweezers, RTs) to optically trap plastic particles with sizes from tens of µm down to 90 nm and unambiguously reveal their chemical composition. RTs applications are shown on particles made of the most common plastic pollutants, including polyethylene, polypropylene, nylon and polystyrene, that are artificially fragmented and aged directly in seawater. RTs allow us to assess the size and shapes of microparticles (beads, fragments, fibers) and can be applied to investigate particles covered with organic layers. Furthermore, operating at the single particle level, RTs enable unambiguous distinction of plastic particles from marine microorganisms and seawater minerals, overcoming the capacities of standard Raman spectroscopy in liquid, limited to average measurements. Coupled to suitable extraction and concentration protocols, RTs could have a strong impact in the study of the fate of micro and nanoplastics in marine environment, as well as in the understanding of the fragmentation processes on a multi-scale level.

Subject Areas

Microplastics, Nanoplastics, Optical Tweezers, Raman Spectroscopy

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.