Preprint
Article

This version is not peer-reviewed.

Mechanism of Action of Extremely Low Frequency or Static Magnetic Fields on Cells: Role of Oxidative Activation of TRPM2

Submitted:

15 January 2019

Posted:

16 January 2019

You are already at the latest version

Abstract
There have been a great number of investigations about the influence of weak magnetic fields on biological systems, such as isolated cells and whole organisms. This is also a subject of considerable medical concern since old epidemiologic observations have indicated a possible tumorigenic effect of these fields. Their mechanism of action, however, is not firmly established. A large number of biological effects of electromagnetic fields have been attributed either to the production of reactive oxygen species (ROS) or to the entrance Ca2+ in the cell. A new biochemical pathway is proposed that covers these two possibilities: the primary effect of the magnetic field would be by the mechanism of radical pairs resulting in the production of ROS; these could activate the ion channels TRPM2 producing cellular inflow of Ca2+, which would induce the calcium dependent effects. Thus, a large number of biological effects observed up to the present could be explained.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated