Preprint
Article

Signal-to-Noise Ration Evaluation of Luojia 1-01 Satellite Nighttime Light Remote Sensing Camera Based on Time Sequence Images

This version is not peer-reviewed.

Submitted:

08 January 2019

Posted:

09 January 2019

You are already at the latest version

Abstract
Signal-to-noise ratio (SNR) is an important index to evaluate radiation performance and image quality of optical imaging systems under low illumination background. Under the nighttime lighting condition, the illumination of remote sensing objects is low and varies greatly, usually ranging from several lux to tens of thousands of lux. Nighttime light remote sensing imaging requires high sensitivity and large dynamic range of detectors. Luojia 1-01 is the first professional nighttime light remote sensing satellite in the world. In this paper, we took the nighttime light remote sensing camera carried on the satellite as research object, proposed an in-orbit SNR test method based on time series images to overcome the problem of low spatial resolution. We first analyzed the process of luminous flux transmission between objects and satellite and established a radiative transfer model. By combining the parameters of large relative aperture optical system and high sensitivity CMOS device, we established SNR model and specially analyzed the effect of exposure time and quantization bits on SNR. Finally we used the proposed in-orbit test method to calculate SNR of lighting images acquired by satellite. And the measured result is in good agreement with the model predicted data. Under the condition of 10lx illumination, the SNR of typical objects can reach 27.02dB, which is much better than the requirement of 20dB for engineering application.
Keywords: 
signal-to-noise ratio; nighttime light imaging; time sequence images; Luojia 1-01; radiative transfer model; radiometric calibration; in-orbit test
Subject: 
Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

862

Views

608

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated