Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mechanical Behavior of Inconel 625 at Elevated Temperatures

Version 1 : Received: 27 December 2018 / Approved: 31 December 2018 / Online: 31 December 2018 (09:41:56 CET)

A peer-reviewed article of this Preprint also exists.

de Oliveira, M.M.; Couto, A.A.; Almeida, G.F.C.; Reis, D.A.P.; de Lima, N.B.; Baldan, R. Mechanical Behavior of Inconel 625 at Elevated Temperatures. Metals 2019, 9, 301. de Oliveira, M.M.; Couto, A.A.; Almeida, G.F.C.; Reis, D.A.P.; de Lima, N.B.; Baldan, R. Mechanical Behavior of Inconel 625 at Elevated Temperatures. Metals 2019, 9, 301.

Abstract

Abstract: The Inconel 625 is a nickel-based alloy has been widely used in the high-temperature application. The Inconel 625 exhibits unstable plastic flow at elevated temperature characterized by serrated yielding, known as Portevin-Le Chatelier effect. The aim of this work is to evaluate the mechanical properties at high temperatures of the Inconel 625. The tensile tests were performed in the temperature range of room temperature until 1000 °C and strain rate of 2x10^-4 to 2x10^-3 s^-1. The creep tests were performed in the temperature range of 600-700 °C, in the stress range of 500-600 MPa in a constant load mode. The surface fracture was observed by optical and scanning electron microscopy. Serrated stress-strain behavior was observed in the curves obtained at 200 to 700 °C, which was associated with the dynamic strain aging effect. The yield strength and the elongation values show an anomalous behavior as a function of the test temperature. An intergranular cracking was observed specimen tensile tested at 500 °C that can be attributed to the decohesion of the carbides along the grain boundaries. The fracture surface of the specimen tensile tested at 700 °C showed the predominance of transgranular cracking with tear dimples with a parabolic shape.

Keywords

Inconel; high temperature; tensile test; creep; serrated; dynamic strain aging

Subject

Chemistry and Materials Science, Metals, Alloys and Metallurgy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.