Preprint Article Version 1 This version is not peer-reviewed

Structure of Solidified Films of CaO-SiO2-Na2O Based Low-Fluorine Mold Flux

Version 1 : Received: 5 December 2018 / Approved: 6 December 2018 / Online: 6 December 2018 (08:40:10 CET)

How to cite: Zeng, J.; Long, X.; You, X.; Li, M.; Wang, Q.; He, S. Structure of Solidified Films of CaO-SiO2-Na2O Based Low-Fluorine Mold Flux . Preprints 2018, 2018120079 Zeng, J.; Long, X.; You, X.; Li, M.; Wang, Q.; He, S. Structure of Solidified Films of CaO-SiO2-Na2O Based Low-Fluorine Mold Flux . Preprints 2018, 2018120079

Abstract

As an essential synthetic material used in continuous casting of steels, mold fluxes improve the surface quality of steel slabs. In this study, a CaO-SiO2-Na2O based low-fluorine mold flux was solidified by an improved water-cooled copper probe with different temperatures of molten flux and different probe immersion times. The heat flux through solid films and the film structures were calculated and inspected, respectively. The results indicate: large internal cracks (formed in the glassy layer of films during solidification) were observed, the formation and evolution of those cracks contributed to the the unstable heat flux density. The roughness of the surface in contacted with the water-cooled copper probe formed as films were still glassy and the roughness have no causal relationship with crystallization or devitrification. Combeite with columnar and faceted dendritic shapes is the main crystal in the film.

Subject Areas

mold flux; low fluorine; internal crack; surface roughness; slag film

Readers' Comments and Ratings (0)

Leave a public comment
Send a private comment to the author(s)
Rate this article
Views 0
Downloads 0
Comments 0
Metrics 0
Leave a public comment

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.