Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evaluation of Fengyun-3C Soil Moisture Products Using In situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China

Version 1 : Received: 4 December 2018 / Approved: 5 December 2018 / Online: 5 December 2018 (14:05:35 CET)

A peer-reviewed article of this Preprint also exists.

Zhu, Y.; Li, X.; Pearson, S.; Wu, D.; Sun, R.; Johnson, S.; Wheeler, J.; Fang, S. Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water 2019, 11, 248. Zhu, Y.; Li, X.; Pearson, S.; Wu, D.; Sun, R.; Johnson, S.; Wheeler, J.; Fang, S. Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water 2019, 11, 248.

Abstract

Soil moisture (SM) products derived from passive satellite missions are playing an increasingly important role in agricultural applications, especially in crop monitoring and disaster warning. Evaluating the dependability of those products before they can be used on a large scale is crucial. In this study, we assessed the level 2 (L2) SM product from the Chinese Fengyun-3C (FY-3C) radiometer against in situ measurements collected from the Chinese Automatic Soil Moisture Observation Stations (CASMOS) during a one-year period from January 1 to December 31, 2016 in Henan, which is an agricultural province in China. Four statistical parameters were used to evaluate the products’ reliability: mean difference, root-mean-square error (RMSE), unbiased RMSE (ubRMSE), and the correlation coefficient. These statistical indicators revealed that the FY-3C L2 SM product generally did not agree with the in situ SM data from CASMOS. The time-series analysis further indicated that the correlations and estimated error were highly related to the growing periods of the crops in our study area. FY-3C L2 SM data tended to overestimate soil moisture during May, August, and September, when the crops reach their maximum vegetation density, and tended to underestimate the soil moisture content during the rest of the year. The averaged correlation coefficient between FY-3C SM and the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index was 0.55, which demonstrates that the vegetation water content of the crops considerably influences the SM product. To improve the accuracy of the FY-3C SM product, an improved algorithm that can filter out the influences of the crops should be applied in the future.

Keywords

Soil moisture; Fengyun-3C; Passive microwave; Chinese Automatic Soil Moisture Observation Stations; NDVI

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.