Preprint
Article

Data Pruning of Tomographic Data for the Calibration of Strain Localization Models

This version is not peer-reviewed.

Submitted:

12 November 2018

Posted:

13 November 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The development and generalization of Digital Volume Correlation (DVC) on X-ray computed tomography data highlight the issue of long term storage. The present paper proposes a new model-free method for pruning the DVC data. The size of the remaining sampled data can be user-defined, depending on the needs concerning storage space. The data pruning procedure is deeply linked to hyper-reduction techniques. The DVC data of a resin-bonded sand tested in uniaxial compression is used as an illustrating example. The relevance of the pruned data is tested afterwards for model calibration. A new Finite Element Model Updating (FEMU) technique coupled with an hybrid hyper-reduction method is used to successfully calibrate a constitutive model of the resin bonded sand with the pruned data only.
Keywords: 
archive; model reduction; 3D reconstruction; inverse problem plasticity; data science
Subject: 
Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

300

Views

173

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated