Let $\Gamma_{\fbox{n}}(k)$ denote $(k-1)!$, where $n \in \{3,\ldots,14\}$ and $k \in \{2\} \cup \left\{2^{\textstyle 2^{n-3}}+1, 2^{\textstyle 2^{n-3}}+2, 2^{\textstyle 2^{n-3}}+3, \ldots\right\}$. For an integer $n \in \{3,\ldots,14\}$, let $\Sigma_n$ denote the following statement: if a system of equations ${\mathcal S} \subseteq \{\Gamma_{\fbox{n}}(x_i)=x_k:~i,k \in \{1,\ldots,n\}\} \cup \{x_i \cdot x_j=x_k:~i,j,k \in \{1,\ldots,n\}\}$ has only finitely many solutions in positive integers $x_1,\ldots,x_n$, then each such solution $(x_1,\ldots,x_n)$ satisfies $x_1,\ldots,x_n \leqslant 2^{\textstyle 2^{n-2}}$. The statement $\Sigma_6$ proves the following implication: if the equation $x(x+1)=y!$ has only finitely many solutions in positive integers $x$ and $y$, then each such solution $(x,y)$ belongs to the set $\{(1,2),(2,3)\}$. The statement $\Sigma_6$ proves the following implication: if the equation $x!+1=y^2$ has only finitely many solutions in positive integers $x$ and $y$, then each such solution $(x,y)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$. The statement $\Sigma_9$ implies the infinitude of primes of the form $n^2+1$. The statement $\Sigma_9$ implies that any prime of the form $n!+1$ with $n \geqslant 2^{\textstyle 2^{9-3}}$ proves the infinitude of primes of the form $n!+1$. The statement $\Sigma_{14}$ implies the infinitude of twin primes.