Preprint
Article

On Sets ${\mathcal X} \subseteq$ $\mathbb N$ for Which We Know an Algorithm That Computes a Threshold Number $t({\mathcal X}) \in$ $\mathbb N$ Such That ${\mathcal X}$ Is Infinite If and Only If ${\mathcal X}$ Contains an eLement Greater Than $t({\mathcal X})$

This version is not peer-reviewed.

Submitted:

29 November 2018

Posted:

29 November 2018

Read the latest preprint version here

Abstract
We define computable functions $g,h:$ $\mathbb N$ $\setminus \{0\} \to$ $\mathbb N$ $\setminus \{0\}$. For an integer $n \geqslant 3$, let $\Psi_n$ denote the following statement: if a system ${\mathcal S} \subseteq \Bigl\{x_i!=x_k: (i,k \in \{1,\ldots,n\}) \wedge (i \neq k)\Bigr\} \cup \Bigl\{x_i \cdot x_j=x_k: i,j,k \in \{1,\ldots,n\}\Bigr\}$ has only finitely many solutions in positive integers $x_1,\ldots,x_n$, then each such solution $(x_1,\ldots,x_n)$ satisfies $x_1,\ldots,x_n \leqslant g(n)$. For a positive integer $n$, let $\Gamma_n$ denote the following statement: if a system $S \subseteq \Bigl\{x_i \cdot x_j=x_k:~i,j,k \in \{1,\ldots,n\}\Bigr\} \cup \Bigl\{2^{\textstyle 2^{\textstyle x_i}}=x_k:~i,k \in \{1,\ldots,n\}\Bigr\}$ has only finitely many solutions in positive integers $x_1,\ldots,x_n$, then each such solution $(x_1,\ldots,x_n)$ satisfies $x_1,\ldots,x_n \leqslant h(n)$. We prove: (1) if the equation $x!+1=y^2$ has only finitely many solutions in positive integers, then the statement $\Psi_6$ guarantees that each such solution $(x,y)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$, (2) the statement $\Psi_9$ proves the following implication: if there exists a positive integer $x$ such that $x^2+1$ is prime and $x^2+1>g(7)$, then there are infinitely many primes of the form $n^2+1$, (3) the statement $\Psi_9$ proves the following implication: if there exists an integer $x \geqslant g(6)$ such that $x!+1$ is prime, then there are infinitely many primes of the form $n!+1$, (4) the statement $\Psi_{16}$ proves the following implication: if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes, {\bf (5)}~the statement $\Gamma_{13}$ proves the following implication: if $n \in$ $\mathbb N$ $\setminus \{0\}$ and $2^{\textstyle 2^{\textstyle n}}+1$ is composite and greater than $h(12)$, then $2^{\textstyle 2^{\textstyle n}}+1$ is composite for infinitely many positive integers $n$.
Keywords: 
Brocard's problem; Brocard-Ramanujan equation; composite Fermat numbers; halting of a Turing machine; prime numbers of the form $n^2+1$; prime numbers of the form $n!+1$; Richert's lemma; twin prime conjecture
Subject: 
Computer Science and Mathematics  -   Logic
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

2057

Views

3152

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated