Preprint
Article

This version is not peer-reviewed.

BAGAN: Effective Data Generation Based on GAN Augmented 3D Synthesizing

A peer-reviewed article of this preprint also exists.

Submitted:

08 November 2018

Posted:

09 November 2018

You are already at the latest version

Abstract
Augment reality (AR) is crucial for immersive human-computer interaction (HCI) and vision of artificial intelligence (AI). Labeled data drove object recognition in AR. However, manual annotating data is expensive and labor-intensive, and furthermore, scanty labeled data limits the application of AR. Aiming at solving the problem of insufficient training data in AR object recognition, an automated vision data synthesis method called BAGAN is proposed in this paper based on the 3D modeling and GAN algorithm. Our approach has been validated to have better performance than other methods through image recognition task on natural image database ObjectNet3D. This study can shorten the algorithm development time of AR and expand the application scope of AR, which is of great significance to immersive interactive systems.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated