Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Understanding Land-Atmosphere-Climate Coupling from the Canadian Prairie Dataset

Version 1 : Received: 7 November 2018 / Approved: 8 November 2018 / Online: 8 November 2018 (14:13:53 CET)

A peer-reviewed article of this Preprint also exists.

Betts, A.K.; Desjardins, R.L. Understanding Land–Atmosphere–Climate Coupling from the Canadian Prairie Dataset. Environments 2018, 5, 129. Betts, A.K.; Desjardins, R.L. Understanding Land–Atmosphere–Climate Coupling from the Canadian Prairie Dataset. Environments 2018, 5, 129.


Analysis of the hourly Canadian Prairie data for the past 60 years has transformed our quantitative understanding of land-atmosphere-cloud coupling. The key reason is that trained observers made hourly estimates of opaque cloud fraction that obscures the sun, moon or stars, following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data are of sufficient quality that they can be calibrated against Baseline Surface Radiation Network data to give the climatology of the daily short-wave, longwave and total cloud forcing (SWCF, LWCF and CF). This key radiative forcing has not been available previously for climate datasets. Net cloud radiative forcing reverses sign from negative in the warm season to positive in the cold season, when reflective snow reduces the negative SWCF below the positive LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 10°C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover and the diurnal range of temperature. In the warm season, maximum temperature increases with decreasing cloud, while minimum temperature barely changes; while in the cold season with snow cover, maximum temperature decreases with decreasing cloud and minimum temperature decreases even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent potential temperature and the pressure height of the lifting condensation level are all tightly coupled to opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, perhaps for the first time, the coupling between cloud forcing and the warm season imbalance of the diurnal cycle; which changes monotonically from a warming and drying under clear skies to a cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud radiative forci, which is large, we are able to show that the memory of water storage anomalies, from precipitation and the snowpack, goes back many months. The spring climatology shows the memory of snowfall back through the entire winter, and the memory in summer goes back to the months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the diurnal cycle to the cloud forcing, and shift the diurnal cycle of mixing ratio which has a double peak. The seasonal extraction of the surface total water storage is a large damping of the interannual variability of precipitation anomalies in the growing season. The large land-use change from summer fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent potential temperature, and increasing precipitation. We show a simplified energy balance of the Prairies during the growing season and its dependence on reflective cloud.


Climate; land-atmosphere interaction; clouds; diurnal cycle; snow cover; Prairies; land-use; hydrometeorology


Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.