Preprint
Article

This version is not peer-reviewed.

3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing

A peer-reviewed article of this preprint also exists.

Submitted:

02 November 2018

Posted:

05 November 2018

You are already at the latest version

Abstract
Although distributed additive manufacturing can provide high returns on investment the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by 3-D printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here provides for precise controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built and tested for its ability to provide high tolerance thermopolymer pellets from a number of sizes capable of being used in a FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/hr throughput with one motor, and 1.0 kg/hr throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF and indirectly after being converted into high-tolerance filament in a recyclebot.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated