Preprint
Article

This version is not peer-reviewed.

Kempe-Locking Configurations

A peer-reviewed article of this preprint also exists.

Submitted:

27 October 2018

Posted:

29 October 2018

You are already at the latest version

Abstract
Existing proofs of the 4-color theorem succeeded by establishing an unavoidable set of reducible configurations. By this device, their authors showed that a minimum counterexample cannot exist. G.D. Birkhoff proved that a minimum counterexample must satisfy a connectivity property that is referred to in modern parlance as internal 6-connectivity. We show that a minimum counterexample must also satisfy a coloring property, one that we call Kempe-locking. We define the terms Kempe-locking configuration and fundamental Kempe-locking configuration. We provide a heuristic argument that a fundamental Kempe-locking configuration must be of low order and then perform a systematic search through isomorphism classes for such configurations. We describe a methodology for analyzing whether an arbitrary planar triangulation is Kempe-locked; it involves deconstructing the triangulation into a stack of configurations with common endpoints and then creating a bipartite graph of coloring possibilities for each configuration in the stack to assess whether certain 2-color paths can be transmitted from the configuration's top boundary to its bottom boundary. All Kempe-locked triangulations we discovered have two features in common: (1) they are Kempe-locked with respect to only a single edge, say $xy$, and (2) they have a Birkhoff diamond with endpoints $x$ and $y$ as a proper subgraph. On the strength of our various investigations, we are led to a plausible conjecture that the Birkhoff diamond is the only fundamental Kempe-locking configuration. If true, this would establish that the connectivity and coloring properties of a minimum counterexample to the 4-color theorem are incompatible. It would also point to the singular importance of a particularly elegant 4-connected triangulation of order 9 that consists of a triangle enclosing a pentagon enclosing a single vertex.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated