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Abstract. Existing proofs of the 4-color theorem succeeded by establishing

an unavoidable set of reducible configurations. By this device, their authors

showed that a minimum counterexample cannot exist. G.D. Birkhoff proved
that a minimum counterexample must satisfy a connectivity property that is

referred to in modern parlance as internal 6-connectivity. We show that a

minimum counterexample must also satisfy a coloring property, one that we
call Kempe-locking. We define the terms Kempe-locking configuration and

fundamental Kempe-locking configuration. We provide a heuristic argument

that a fundamental Kempe-locking configuration must be of low order and
then perform a systematic search through isomorphism classes for such con-

figurations. We describe a methodology for analyzing whether an arbitrary
planar triangulation is Kempe-locked; it involves deconstructing the triangu-

lation into a stack of configurations with common endpoints and then creating

a bipartite graph of coloring possibilities for each configuration in the stack to
assess whether certain 2-color paths can be transmitted from the configura-

tion’s top boundary to its bottom boundary. All Kempe-locked triangulations

we discovered have two features in common: (1) they are Kempe-locked with
respect to only a single edge, say xy, and (2) they have a Birkhoff diamond with

endpoints x and y as a proper subgraph. On the strength of our various inves-

tigations, we are led to a plausible conjecture that the Birkhoff diamond is the
only fundamental Kempe-locking configuration. If true, this would establish

that the connectivity and coloring properties of a minimum counterexample

to the 4-color theorem are incompatible. It would also point to the singular
importance of a particularly elegant 4-connected triangulation of order 9 that

consists of a triangle enclosing a pentagon enclosing a single vertex.

1. Introduction

It was almost a hundred years after the well-publicized, but flawed, attempt by
Alfred Bray Kempe [7], a barrister and amateur mathematician, that the 4-color
theorem was finally proved. In 1976, Kenneth Appel and Wolfgang Haken an-
nounced their solution [1, 2]. Whereas they analyzed the 4-color problem in terms
of maps, today’s mathematicians analyze graphs, possible because every map has an
easily constructed dual graph. In 1997, a highly regarded team of graph theorists—
Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas—simplified the
Appel-Haken proof in a number of respects, their efforts culminating in an unavoid-
able set of 633 reducible configurations [8].

We assume a basic familiarity with the terminology of elementary graph theory—
vertex, edge, face, simple graph, planar graph, subgraph, induced subgraph, path,
cycle, connectivity, adjacent vertices, order, vertex degree, minimum degree. (Refer
to the introductory text by Chartrand and Zhang [6]). We also a assume a basic
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2 JAMES A. TILLEY

familiarity with the 4-color problem. In this article we limit ourselves to coloring
the vertices of simple, connected, planar graphs, and, as is usual, we consider
only proper colorings of such graphs, colorings in which no two adjacent vertices
have the same color. In short, the 4-color theorem states that it takes no more
than four distinct colors to color any simple planar graph properly. In studying
the 4-color problem, we need consider only planar graphs that are triangulations,
graphs in which all faces are delineated by three edges. That is because any planar
graph that is not a triangulation can be turned into a triangulation by inserting
edges until all faces are triangular. After properly coloring the triangulation, the
inserted edges can be deleted, leaving the original graph with a proper coloring.
If all faces of a planar graph except one are triangular, the graph is referred to as
a near-triangulation. Near-triangulations in which the only non-triangular face is
four-sided are particularly important in this article; such a near-triangulation can
be derived by deleting any edge in a triangulation. As is customary, we use the
term configuration for a near-triangulation whose non-triangular face is the infinite
face.

This article is not about finding an alternative proof to the 4-color theorem;
instead, it is an exploratory paper aimed at gaining a deeper understanding of why
the 4-color theorem is true, what it is about a planar graph that guarantees that it
can be 4-colored. We go about this task by focusing on the properties of a minimum
counterexample. The two properties we single out for thorough examination relate
to connectivity and coloring. These are the subjects of the next two sections.

2. Connectivity property

Every existing proof of the 4-color theorem has been based on showing that a
minimum counterexample cannot exist. If a counterexample does exist, then there
must be one or more smallest counterexamples, where by “smallest” we mean the
counterexample(s) having the lowest order (fewest vertices). In a landmark paper
in 1913, Birkhoff [3] showed, among other things, that a minimum counterexample
to the 4-color theorem must be internally 6-connected. That was not a term of his
choosing; it arrived on the graph theory scene much later.

Property 1. (Connectivity) A planar triangulation is said to be internally 6-
connected if it is minimum degree 5 and has no cycle of length 5 or less for which
there are two or more vertices both inside and outside the cycle.

A graph G is connected if there is a path joining every pair of vertices. It is said to
be k-connected if it has more than k vertices and remains connected whenever fewer
than k vertices are deleted. Internal 6-connectivity implies 6-connectivity only in
a limited sense because a planar graph cannot be 6-connected. To understand the
term, it is helpful to introduce the concept of a separating k-cycle: it is a k-cycle in a
graph such that there are one or more vertices in the graph both inside and outside
the cycle. Thus, a graph with a separating k-cycle can be at most k-connected.
A 5-connected triangulation is minimum degree 5 and has no separating 3-cycles
or 4-cycles. But in such a triangulation, all separating 5-cycles are permitted.
An internally 6-connected triangulation is almost the same, except that not all
separating 5-cycles are permitted, only those associated with vertices of degree 5.
An internally 6-connected triangulation can be drawn so that each separating 5-
cycle “encloses” a single vertex of degree 5. In a 5-connected triangulation there
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KEMPE-LOCKING CONFIGURATIONS 3

can be 5-cycles with two or more vertices both inside and outside the cycle, but in
an internally 6-connected triangulation there cannot.

What Birkhoff showed long before the 4-color theorem was proved is that if a min-
imum counterexample exists, it must be internally 6-connected. The Appel-Haken
team [1, 2] and the Robertson-Sanders-Seymour-Thomas team [8] each proved the
4-color theorem by constructing a finite set of configurations at least one of which
must appear in any internally 6-connected triangulation—this is the unavoidability
part of the proof. Each team brought its proof to a successful conclusion by con-
structing an unavoidable set such that every configuration in it is reducible. Any
planar triangulation containing a reducible configuration is 4-colorable if the graph
with that configuration removed is 4-colorable; thus, such a planar triangulation
cannot be a minimum counterexample to the 4-color theorem.

3. Coloring property

We follow the standard practice of indicating the color of a vertex by using one of
the integers 1, 2, 3, 4, . . . . If the first k integers are used to color the vertices of a
graph, we say that the graph is k-colored.

It is important to understand what we mean by a distinct coloring of G. Another
way to think of a k-coloring of G is that the set of all vertices in G has been
partitioned into k independent sets, each set assigned a distinct color from 1 to k.
An independent set of vertices is one in which no two vertices are adjacent. What
matters is the partition (what vertices belong to what independent set); it does
not matter how we assign colors to the various independent sets. Thus, a mere
permutation of colors does not lead to a distinctly different coloring of G.

A useful tool in graph coloring is the Kempe chain, named after the British
mathematician whose attempt at proving the 4-color theorem failed [7]. In a given
coloring of a graph G, a Kempe chain is a maximal, connected, induced subgraph
of G whose vertices use only two colors, let us say colors i and j. An i-j Kempe
chain is “maximal” in that every vertex adjacent to, but not in, the chain uses a
color other than i or j. In figure 2, there is a single 1-2 Kempe chain in each of
the four uppermost graphs and two distinct 1-2 Kempe chains in each of the two
lowermost graphs. It is customary to consider a vertex colored i not adjacent to
any vertex colored j a short i-j chain and likewise a vertex colored j not adjacent
to any vertex colored i.

Kempe chains are particularly useful in “navigating” among the various distinct
4-colorings of a graph G because interchanging colors on a chain—that is, inter-
changing the color labels i and j for all vertices constituting an i-j chain—leaves
G properly colored. Interchanging colors on an i-j Kempe chain does not lead to a
distinctly different coloring of G if there is only one i-j chain. But, for example, if
there are three distinct i-j chains, then interchanging colors on any one or on any
pair of those chains does lead to a distinctly different coloring of G.

The idea that underpins our different approach to the question of 4-colorability
derives from a graph-coloring problem that is the subject of another article [9],
a coloring problem posed for planar graphs that are near-triangulations in which
the single non-triangular face is quadrilateral. Although we do not pursue that
coloring problem per se in this article, we do focus on near-triangulations with a
4-face and find it useful to establish a few conventions regarding the drawing and
vertex labeling of such graphs. In this article, we always draw them with the 4-face
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4 JAMES A. TILLEY

as the infinite (exterior) region oriented as shown in figure 1 and we always label
the boundary cycle of the 4-face uxvy with u the bottom vertex, x the left-hand
vertex, v the top vertex, and y the right-hand vertex. Then x and y constitute
one pair of opposite vertices and u and v the other pair. We use the notation Gxy

to refer to the near-triangulation that results when the edge xy is deleted from a
planar triangulation T . Such a near-triangulation can always be drawn as depicted
in figure 1.

 

                     v 

 

 

 

 

  x                                     y 

 

 

 

 

                     u 

Figure 1. The schematic representation of a near-triangulation
with an exterior 4-face. The interior of the graph includes vertices
and edges that form triangular faces.

Property 2. (Coloring) A planar triangulation T is Kempe-locked with respect
to the edge xy if, in every 4-coloring of Gxy in which the colors of x and y are the
same, there are precisely three distinct Kempe chains that include both x and y.

If T is Kempe-locked with respect to the edge xy, then given a 4-coloring of
Gxy in which x and y are both colored 1, there must be 1-2, 1-3, and 1-4 Kempe
chains including both x and y. Interchanging colors on any of those chains leaves
x and y sharing the same color. Moreover, for any such 4-coloring, because T is
Kempe-locked, interchanging colors on any Kempe chain that does not include x
and y must lead to a 4-coloring in which there are 1-2, 1-3, and 1-4 Kempe chains
that include both x and y. Thus, if interchanging colors on Kempe chains is the
only method of recoloring available, Gxy is “locked into” a state in which x and y
have the same color.

The notion of Kempe-locking should not be confused with the matter of entan-
gled Kempe chains (see [10]), the condition that afflicted Kempe’s attempted proof
of the 4-color theorem. If an i-j Kempe chain and a j-k Kempe chain, i 6= k,
intersect at one or more vertices colored j, then the two chains are said to be en-
tangled. By this definition, there are entangled Kempe chains in every 4-coloring
of every triangulation. In contrast, Kempe-locking turns out to be rare—it is a
coloring property that characterizes not merely a pair of Kempe chains, but an
entire triangulation. It refers to a coloring condition shared by all members of a set
of 4-colorings of the near-triangulation derived by deleting a particular edge from
its parent triangulation.
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KEMPE-LOCKING CONFIGURATIONS 5

To demonstrate that a minimum counterexample has property 2, we first need
to describe the notion of an edge contraction, also known as vertex identification.
Adjacent vertices x and y are said to be identified, or equivalently, the edge xy is
said to be contracted, if x and y are coalesced into a single vertex w, with all the
edges formerly incident to x and y now incident to w. The act of contracting xy
makes a smaller graph; it decreases the order of the graph by one.

Theorem 1. A minimum counterexample to the 4-color theorem is Kempe-locked
with respect to every one of its edges.

Proof. Let T be a minimum counterexample to the 4-color theorem. Contract an
arbitrary edge xy by coalescing x and y into w. This edge contraction yields a
new triangulation T ′ with one fewer vertex than T . Because T is assumed to be a
minimum counterexample, T ′ can be 4-colored. Then, when w is split apart into the
original x and y, but without replacing the edge xy, we obtain a near-triangulation
Gxy in which the colors of x and y are the same.

Now suppose that T is not Kempe-locked with respect to the edge xy. Then
there must be a 4-coloring of Gxy in which x and y are colored the same and in
which there is a Kempe chain that includes x but does not include y. Interchanging
colors on such a chain results in a 4-colored Gxy with the color of x not the same as
the color of y. In this 4-coloring, the edge xy can be inserted to yield a 4-coloring
for T , in contradiction to the assumption that T is a minimum counterexample. �

In contrast to the situation of a minimum counterexample, no 4-colorable planar
triangulation can be Kempe-locked with respect to every one of its edges. The
proof of that result can be found in the appendix.

The key point of this article is that property 1 and property 2—connectivity
and coloring—are likely incompatible. If that could be proved, then the 4-color
theorem would be proved because a minimum counterexample, unable to exhibit
both properties, could not exist. We capture this idea in the form of a plausible
conjecture, one likely to be true but beyond difficult to prove.

Conjecture 1. No planar triangulation that is Kempe-locked with respect to an
edge is internally 6-connected.

To investigate conjecture 1, we set about trying to find planar triangulations
that are Kempe-locked with respect to some edge. Obviously, we need consider
only internally 6-connected triangulations, but to find as many Kempe-locked tri-
angulations as possible so that we can learn what structural properties they might
have in common, we cast the net wider by searching for any that are at least 4-
connected. Because we are studying the properties of a minimum counterexample to
the 4-color theorem, we can omit 3-connected triangulations from consideration by
virtue of the following argument. Any 3-connected planar triangulation T on more
than four vertices must have a separating triangle. Assume that T is a minimum
counterexample. Then, the vertex sets of both (1) the induced proper subgraph of
T consisting of the separating triangle and everything outside it and (2) the induced
proper subgraph of T consisting of the separating triangle and everything inside it
can be 4-colored in such a way that the separating triangle is colored identically
in each subgraph (through a permutation of colors, as necessary). Thus, T can be
4-colored, a contradiction.
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6 JAMES A. TILLEY

4. Examples of Kempe-locked triangulations

Figure 2 shows the six distinct 4-colorings of a particular near-triangulation Gxy

of order 12. These are the only 4-colorings in which x and y (the leftmost and
rightmost vertices on the exterior 4-face) are colored the same. In each of the
4-colorings there are 1-2, 1-3, and 1-4 Kempe chains that include both x and y.
Thus, the triangulation T formed by joining x and y is Kempe-locked with respect
to the edge xy. T does not contradict conjecture 1 because the bottommost and
topmost vertices on the 4-face (u and v, respectively) have degree 4. Indeed, T is
4-connected.
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Figure 2. A near-triangulation of order 12 with all six of its dis-
tinct 4-colorings in which the colors of x and y are the same, with-
out loss of generality color 1.
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KEMPE-LOCKING CONFIGURATIONS 7

We note that the near-triangulation shown in figure 2 becomes the icosahedron
when u and v, instead of x and y, are joined. In that situation, we refer to the near-
triangulation as Guv because it is the edge uv that is deleted from the icosahedron
to form the near-triangulation. In neither of the bottom two 4-colorings of Guv in
figure 2, in which u and v and both colored 2, are there 2-3 or 2-4 Kempe chains
that include both u and v. Because (u, v) can be taken to represent any pair of
adjacent vertices in the highly symmetric and regular icosahedron, we conclude that
the icosahedron is not Kempe-locked with respect to any of its edges.

Figure 3 shows a particular induced subgraph of order 10 of the near-triangulation
of order 12 in figure 2. That subgraph, a configuration, is known as the Birkhoff
diamond, named for the mathematician who first highlighted its importance in the
4-color problem [3]: it was the very first configuration to be proved reducible; its
presence in a triangulation guarantees that the triangulation cannot be a minimum
counterexample. Ironically, we will see that the Birkhoff diamond makes its ap-
pearance in our analysis in an opposite way—namely, that it likely must be present
for a triangulation to be Kempe-locked with respect to an edge and thus possi-
bly a candidate to be a minimum counterexample. Our systematic search among
4-connected and 5-connected triangulations, which we shall describe in section 6,
uncovered a number of Kempe-locked triangulations. All share a common feature:
one or more Birkhoff diamond subgraphs with endpoints x and y.

 

                a       b

 

 

 x                                     y 

 

                c       d

 

Figure 3. The Birkhoff diamond, a configuration of order 10, with
its left- and right-hand endpoints labeled x and y, respectively, and
its topmost and bottommost edges labeled ab and cd, respectively.

Four additional examples of Kempe-locked triangulations (once x and y are
joined) are illustrated in figure 4. By including an arbitrary number of Birkhoff di-
amonds with endpoints x and y in an appropriate way in any triangulation Kempe-
locked with respect to xy, we can obtain an infinite number of Kempe-locked tri-
angulations. However, not all triangulations containing a Birkhoff diamond with
endpoints x and y are Kempe-locked—we shall have more to say on this point in
the following section 5.

5. Kempe-locking configurations

As is our established convention, we let Gxy be the near-triangulation obtained by
deleting the edge xy in a triangulation T . Figure 5 depicts the general structure of
such a Gxy. Every thick solid line represents one or more edges. Any oval, together
with the thick solid lines that join it to endpoints x and y, represents a configuration,
which, because all the configurations we are interested in include both x and y, we
shall refer to as an xy-configuration. Figure 5 shows five such xy-configurations
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8 JAMES A. TILLEY

 

Figure 4. Each of the four graphs becomes a Kempe-locked trian-
gulation when the leftmost and rightmost vertices on the exterior
4-face are joined. Three of the near-triangulations have a single
Birkhoff diamond subgraph; the other near-triangulation has two.

but there can be any (non-negative) number of them. The bottom boundary of
each xy-configuration in the vertical stack always coincides with the top boundary
of the next lower xy-configuration, if there is one. Because xy-configurations can
be combined into a single larger xy-configuration or deconstructed into smaller xy-
configurations, any given Gxy can be represented in multiple ways as a vertical stack
of xy-configurations. However, there is often a “natural” choice as to how to specify
the various configurations. For example, the near-triangulation shown in figure 2
can be exhibited naturally in the form of figure 5 with a single xy-configuration, a
Birkhoff diamond: v is joined to that configuration by two edges and likewise for u
and that configuration includes three edges emanating from each of x and y. The
near-triangulation in the lower right of figure 4 can be put into the general form of
figure 5 naturally by using three xy-configurations, two Birkhoff diamonds with an
xy-configuration between them. The middle configuration has order 6—endpoint
vertices x and y and four others, two on the top boundary, one adjacent to x and
one adjacent to y, and the same for the two on the bottom boundary, one adjacent
to x and one adjacent to y.

This manner of representing Gxy allows us to think somewhat differently about
what it takes for T to be Kempe-locked with respect to the edge xy. The definition
states that in every 4-coloring of Gxy in which the colors of x and y are the same
there must be three Kempe chains that include x and y. Without loss of generality,
let the common color of x and y be 1 and the color of v be 2. Then the three required
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 u 

 x 

 v 

 y 

Figure 5. The general structure of a near-triangulation Gxy.

chains are colored 1-2, 1-3, and 1-4. We are interested in finding an equivalent
condition that might be of greater utility in understanding what is necessary to
create a Kempe-locked triangulation. We proceed by considering two cases:

(1) If the color of u is 2, then there cannot be either a 2-3 path or a 2-4 path
between v and u because the first would have to intersect the 1-4 Kempe
chain that includes both x and y and the second would have to intersect the
1-3 Kempe chain that includes both x and y, neither of which is possible.

(2) If the color of u is not 2, we can choose it to be 3 without loss of generality.
There cannot be a 2-3 path between v and u because it cannot intersect
the 1-4 Kempe chain that includes both x and y. Obviously there cannot
be a 2-4 path between v and u when v is colored 2 and u is colored 3.

We have just shown that the existence of three Kempe chains including both x
and y implies the non-existence of any 2-color paths between v and u using colors
different from the common color of x and y. The converse is proved in [9], thus
establishing the truth of the following theorem 2.

Theorem 2. Let T be a planar triangulation and Gxy the near-triangulation de-
rived from it by deleting the edge xy. Let uxvy be the 4-cycle delineating the 4-face
of Gxy. Then T is Kempe-locked with respect to the edge xy if and only if, in every
4-coloring of Gxy in which the colors of x and y are the same, there is no 2-color
path between v and u that uses colors different from the common color of x and y.

Consider figure 5 with x and y both colored 1 and v colored 2. If a 2-3 path be-
tween v and u were to exist, it would have to pass through every xy-configuration
in the vertical stack on its way from v to u. Thus, there would have to exist a
4-coloring for each xy-configuration that transmits the 2-3 path from the configu-
ration’s top boundary to its bottom boundary and such 4-colorings for the various
xy-configurations would have to match along their coincident boundaries. Each
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10 JAMES A. TILLEY

xy-configuration would have to be able to take the 2-3 path presented to it as input
at its top boundary and carry it through to the bottom boundary, that output then
passed along as input to the next xy-configuration. Thus, there might exist certain
xy-configurations for which this “passing along” cannot be assured or which make
it impossible to “complete” the path at vertex u and achieve a proper coloring of
Gxy. Such a configuration potentially enables a Kempe-locked triangulation. The
Birkhoff diamond is one of these special configurations.

To understand how the Birkhoff diamond can prevent a 2-color path between v
and u, we analyze all possible colorings of figure 3 when x and y are both colored 1.
Because the vertices a, b, c, and d are all adjacent to either x or y, they must take
their colors from {2,3,4}. There are six possible pairings of colors for either (a, b) or
(c, d): (2,3), (2,4), (3,2), (3,4), (4,2), and (4,3). The various proper colorings of the
Birkhoff diamond subject to this constraint are not provided here—they are easily
determined. Instead, we summarize the results in terms of the possible transitions
from the colors of the (a, b) pair along the top boundary of the Birkhoff diamond
to the colors of the (c, d) pair along the bottom boundary. We can represent the
permitted transitions between (a, b) and (c, d) as a bipartite graph, a graph in which
each vertex is assigned to one of two independent sets and the only edges in the
graph thus occur between a vertex in one set and a vertex in the other. Figure
6 shows such a graph for the Birkhoff diamond with both x and y constrained
to have color 1. The possibilities for (a, b) appear as the top set of six vertices
and the possibilities for (c, d) appear as the bottom set of six vertices. An edge
exists between a vertex in the top set and a vertex in the bottom set if and only if
there exists a proper 4-coloring of the Birkhoff diamond for that pairing of top and
bottom vertices. We have depicted the various edges in figure 6 as thin or thick
solid lines or as dotted or dashed lines. A thin solid line indicates the presence of
both a 2-3 path and a 2-4 path between (a, b) and (c, d); a thick solid line indicates
the absence of both a 2-3 path and a 2-4 path; a dotted line the presence of a 2-3
path only; and a dashed line the presence of a 2-4 path only.
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Figure 6. A bipartite graph that shows for the Birkhoff diamond
(see figure 3) the possible transitions from the input pair of colors
(a, b) at the top of the graph to the output pair of colors (c, d) at
the bottom of the graph.

We can use figure 6 to provide a straightforward demonstration that the trian-
gulation giving rise to the near-triangulation depicted in figure 2 is Kempe-locked
with respect to the edge xy. With x and y both colored 1 and v colored 2, the only
possibilities for (a, b) are (3,4) and (4,3). Consider the case (3,4). From figure 6, we
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KEMPE-LOCKING CONFIGURATIONS 11

see that the only possibilities for (c, d) are (2,4), (3,2), and (3,4). (This conclusion
is confirmed by inspection of figure 2.) There is only a 2-4 path between (3,4) and
(2,4) and it cannot be completed because u must then take color 3 for a proper col-
oring. There is only a 2-3 path between (3,4) and (3,2) and it cannot be completed
because u must then take color 4 for a proper coloring. Finally, there is neither a
2-3 nor a 2-4 path between (3,4) and (3,4). Thus, for the near-triangulation Gxy

in figure 2, neither a 2-3 nor a 2-4 path between v and u can exist if (a, b) is (3,4).
Interchanging colors 3 and 4 throughout Gxy leads to the same conclusion when
(a, b) is (4,3). The bipartite graph in figure 6 explains the Birkhoff diamond’s abil-
ity to enable a Kempe-locked triangulation. With only minor modifications, this
methodology can be used to show that each near-triangulation in figure 4 derives
from a Kempe-locked triangulation.

Appealing to the bipartite methodology may seem like overkill. Why not just use
figure 2 to prove that there is no 2-3 or 2-4 path between v and u? For such an un-
complicated situation, the bipartite analysis is indeed unnecessary, but it becomes
highly useful in more complicated situations in which it is not feasible, either manu-
ally or with the aid of a computer, to list all possible distinct 4-colorings in which x
and y are both colored 1. In such situations, representing a near-triangulation Gxy

as a stack of xy-configurations and then analyzing each configuration in the stack
separately permits us to determine more easily whether a 2-3 or 2-4 path can be
transmitted from v to u. Moreover, figure 5, combined with the bipartite analysis,
sheds light on how an xy-configuration can prevent the transmission or completion
of a 2-color path, whereas simply analyzing a long list of all distinct colorings of a
candidate near-triangulation does not.

In the previous section, we stated that not all triangulations that include a
Birkhoff diamond subgraph with endpoints x and y are Kempe-locked. The bi-
partite methodology can be used to understand why this statement is true. From
figure 6, we see that all coloring states of the top edge (a, b) other than (3,4) and
(4,3) can transmit both 2-3 and 2-4 paths through the diamond to its bottom edge
(c, d). Thus, many near-triangulations Gxy having a Birkhoff diamond subgraph
with endpoints x and y will not be Kempe-locked. The mere presence of a Birkhoff
diamond is not sufficient—if there is any chance for the triangulation T of which
the Birkhoff diamond is a subgraph to be Kempe-locked, the Birkhoff diamond has
to appear in just the right way relative to the other xy-configurations in the vertical
stack. As an example of this, take the graph in the lower right panel of figure 4 and
eliminate the middle xy-configuration entirely; squeeze the two Birkhoff diamonds
together so that the bottom boundary of the upper diamond coincides with the
top boundary of the lower diamond, then apply figure 6 twice to verify that the
triangulation with x and y joined is not Kempe-locked with respect to xy.

The foregoing discussion motivates the following definitions of Kempe-locking
configurations and fundamental Kempe-locking configurations, those particular xy-
configurations that enable a triangulation T to be Kempe-locked with respect to
an edge xy.

Definition 1. Let T be a planar triangulation that is at least 4-connected and
Gxy the near-triangulation derived from it by deleting the edge xy. Let uxvy be
the 4-cycle delineating the 4-face of Gxy. If T is Kempe-locked with respect to the
edge xy, then the xy-configuration Kxy induced by all vertices of Gxy other than
u and v is the Kempe-locking configuration for T .
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Definition 2. Let Kxy be the Kempe-locking configuration for a planar triangu-
lation T (that is at least 4-connected) with an edge xy. Then Kxy is said to be
a fundamental Kempe-locking configuration if it contains no proper subgraph K ′

xy

that is the Kempe-locking configuration for some planar triangulation T ′ (that is
at least 4-connected) with an edge xy.

On the basis of these definitions, the Kempe-locking configuration for any graph
in figure 4 is not fundamental because it has a Birkhoff diamond with endpoints x
and y as a proper subgraph and the Birkhoff diamond is the Kempe-locking config-
uration for the triangulation obtained by joining x and y in the near-triangulation
shown in figure 2.

6. The search for fundamental Kempe-locking configurations

The approach we adopted in searching for fundamental Kempe-locking configu-
rations is analogous to that of experimental physicists in their search for a new
elementary particle with specified properties. Physicists confine their explorations
to collision events involving total energy in an interval sufficient to bring the sought-
after particle into being. Similarly, we explored planar triangulations of orders in
which fundamental Kempe-locking configurations would be expected to be found.
The best chance to discover those configurations would seem to occur when there is
a small number of distinct 4-colorings of a near-triangulation Gxy with x and y the
same color, thus admitting the possibility that every one of those few colorings will
feature three Kempe chains that include both x and y. Equivalently (by means of
theorem 2), we note that in a Gxy of large order with x and y colored the same there
are sufficiently many possibilities for 2-color paths from v to u using colors different
from the common color of x and y to render it a virtual certainty that at least one
such 2-color path will form part of a proper coloring of Gxy. Quite simply, the
combinatorial possibilities for coloring a high-order planar triangulation militate
against the existence of a high-order fundamental Kempe-locking configuration.

To assure that we did not miss any low-order triangulations, we generated the
full set of 8,044 isomorphism classes for 4-connected triangulations of orders 6-
15 and the full set of 9,733 isomorphism classes for 5-connected triangulations of
orders 12-24. (See [4] and [5].) We then tested every edge in a triangulation
from each of the isomorphism classes to determine if there are any 4-colorings with
x and y colored the same but with fewer than three Kempe chains that include
both x and y. It turns out to be rare for this not to be the case. The only
Kempe-locked triangulations we encountered were 4-connected; there were none
at all among 5-connected triangulations (and hence none at all among internally
6-connected triangulations). There are no Kempe-locked triangulations of order
less than 12 and a single 4-connected Kempe-locked triangulation of order 12, the
one illustrated in figure 2 with the leftmost and rightmost vertices on the 4-face
joined. Thus, the Birkhoff diamond is a fundamental Kempe-locking configuration.
There are no Kempe-locked triangulations of order 13, and one 4-connected Kempe-
locked triangulation for each of orders 14 and 15, each of those featuring a Birkhoff
diamond with endpoints x and y and each Kempe-locked with respect to only a
single edge.

In an expanded search for fundamental Kempe-locking configurations, we ex-
amined 4-connected triangulations of orders 16-20. Because the number of iso-
morphism classes grows rapidly with increasing order (from 30,926 at order 16 to
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24,649,284 at order 20—refer to [5]) and because the number of edges in a triangu-
lation increases with increasing order (a planar triangulation of order n has 3n− 6
edges), we soon ran into computation-time limitations imposed by our laptop com-
puter. After deciding to limit aggregate computer execution time to several weeks
instead of several months, we proceeded in the expanded search by examining all
30,926 isomorphism classes of order 16 and all 158,428 isomorphism classes of order
17, but only 100,000 randomly generated non-isomorphic triangulations for each
order from 18 through 20.

For orders 16 and 17, we discovered eight and fourteen non-isomorphic triangu-
lations, respectively, that are Kempe-locked, all with respect to a single edge, call it
xy in each case. Each of those 4-connected Kempe-locked triangulations features a
Birkhoff diamond with x and y as endpoints. Figure 4 shows the Gxy derived from
two such Kempe-locked triangulations. In the random samples of 100,000 triangula-
tions each for orders 18-20, we discovered additional non-isomorphic Kempe-locked
triangulations: ten of order 18, eight of order 19, and five of order 20, all locked
with respect to a single edge xy and all featuring a Birkhoff diamond configuration
with x and y as endpoints. Figure 4 also shows near-triangulations Gxy arising from
Kempe-locked triangulations of orders 19 and 20. It is an open question whether
there are any triangulations that are at least 4-connected and Kempe-locked with
respect to more than a single edge.

Let us take stock of the results of our search for fundamental Kempe-locking
configurations. We found no 5-connected (and hence no internally 6-connected)
Kempe-locked triangulations of orders 12-24. The only fundamental Kempe-locking
configuration we found is the Birkhoff diamond of order 10. We have shown that
there are no fundamental Kempe-locking configurations of orders 9 or less or be-
tween 11 and 15, inclusive, and a sample of 100,000 non-isomorphic 4-connected
triangulations each for orders 18-20 turned up no fundamental Kempe-locking con-
figurations of orders 16-18. We conclude that the “experimental” case is strong
that the Birkhoff diamond is the only fundamental Kempe-locking configuration.

Conjecture 2. The Birkhoff diamond is the sole fundamental Kempe-locking con-
figuration.

Conjecture 2 implies conjecture 1. To see this, refer to the vertex-labeling for
the Birkhoff diamond given in figure 3. We observe that a triangulation T that is
Kempe-locked with respect to an edge xy by means of a Birkhoff diamond subgraph
with endpoints x and y is at most 4-connected because both xaby and xcdy are sep-
arating 4-cycles. Moreover, if conjecture 2 is true, then a minimum counterexample
simply cannot be constructed because the vertices x and y serving as endpoints for
any edge xy that is Kempe-locked must have degree at least 6. Because the sig-
nature feature of a Birkhoff diamond is its four central vertices of degree 5, none
of the five edges involving pairs of those four central vertices can be Kempe-locked
and, by theorem 1, a counterexample cannot exist. Conjecture 2 alone has sufficient
power to imply 4-colorability of planar graphs.

7. An even more fundamental graph

Based on the arguments and analysis presented in this article, it is highly likely
that the Birkhoff diamond serves an essential role in creating a Kempe-locked tri-
angulation. Thus, it is illuminating to consider an even more fundamental graph
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from which the Birkhoff diamond naturally arises. Key to the notion of Kempe-
locking with respect to a deleted edge xy is that the vertices x and y have the
same color and that they cannot be made to differ in color through any sequence
of Kempe exchanges. Consequently, we need to analyze all possible 4-colorings of
figure 3 in which x and y have the same color. That set consists of the six distinct
4-colorings shown in figure 2 as restricted to the Birkhoff diamond subgraph. In
turn, we note that that particular set of six distinct 4-colorings is identical to the
set of all possible 4-colorings of the triangulation of order 9 formed by coalescing
x and y into a single vertex of degree 6. That triangulation can be drawn as de-
picted in figure 7—a triangle enclosing a pentagon enclosing a single vertex. It is
quite satisfying to think that such an elegant graph might lie at the heart of why
a minimum counterexample to the 4-color theorem does not exist, at the heart of
why all planar triangulations must be 4-colorable. 

Figure 7. This 4-connected triangulation of order 9 is likely the
key to why a minimum counterexample to the 4-color theorem
does not exist. The Birkhoff diamond of order 10 results when the
topmost vertex is split into two vertices, each of degree 3.

8. Final observations and conclusions

It is not clear how to approach proving either conjecture 1 or conjecture 2. Since
conjecture 2 implies conjecture 1 and lends itself to an appealing explanation for
why a planar graph must be 4-colorable, it is the one on which to focus. Despite
the all-but-convincing experimental support for the truth of conjecture 2, that con-
jecture is almost surely going to be even harder to prove than was the 4-color
theorem. Nonetheless, we have identified two things that have something impor-
tant to offer regarding the matter of 4-colorability: (1) the likely incompatibility
between the connectivity and coloring properties that a minimum counterexam-
ple must exhibit and (2) the likely singular role that the Birkhoff diamond and
its progenitor, the single-vertex-within-a-pentagon-within-a-triangle graph, play in
Kempe-locking. They both provide fertile ground for new research.

Appendix

In this appendix, we prove that no 4-colorable planar triangulation can be Kempe-
locked with respect to every one of its edges. We begin with a few preliminary
demonstrations.
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Theorem 3. If T is a 4-colorable planar triangulation that is Kempe-locked with
respect to the edge xy, then every 4-coloring of T has a 2-color cycle including the
edge xy.

Proof. Suppose there is a 4-coloring χ of a planar triangulation T that is Kempe-
locked with respect to xy in which there is not a 2-colored cycle including both
x and y. Without loss of generality, let the colors of x and y in χ be 1 and 2,
respectively. Then, in the near-triangulation Gxy formed by deleting the edge xy,
the coloring χ (as it applies to Gxy) can be transformed into a coloring χ′ by
performing a 1-2 interchange of colors on the Kempe chain that includes y but does
not include x. In χ′, both x and y have color 1. But then, by the statement of
property 2, T cannot be Kempe-locked, contrary to our initial supposition. �

Lemma 1. Every 2-color cycle in a planar triangulation must enclose at least one
vertex.

Proof. Any cycle with a fully-triangulated interior and no interior vertices requires
at least three colors for a proper vertex-coloring because any triangle demands three
colors. �

Theorem 4. No 4-colorable planar triangulation can be Kempe-locked with respect
to every one of its edges.

Proof. Suppose that T is a 4-colorable planar triangulation that is Kempe-locked
with respect to every one of its edges. Let xy be one such edge and let T be given
a 4-coloring in which, without loss of generality, the colors of x and y are 1 and 2,
respectively. By theorem 3, there is in T a 2-color cycle C using the colors 1 and 2
that includes xy. By lemma 1, C must enclose at least one vertex and because T is
a triangulation we know that there is such an enclosed vertex u that is adjacent to
both x and y. Without loss of generality, u has color 3. Any vertex adjacent to u
must be have color 1, 2, or 4. If none has color 4, then, without loss of generality,
we can consider the cycle C to enclose only u. If there is a vertex v colored 4
adjacent to u, then because T is Kempe-locked with respect to uv, there must be a
2-color cycle enclosed by C that uses the colors 3 and 4 and includes the edge uv.
By lemma 1, this 3-4 cycle must enclose at least one vertex. Because T has finite
order and because T is assumed to be Kempe-locked with respect to every one of
its edges, such “telescoping” of 2-color cycles must terminate at a 2-color cycle that
encloses a single vertex. Thus, without loss of generality, we can assume that such
a cycle is, in fact, the starting cycle C colored 1-2 that includes xy and encloses a
single vertex u colored 3. We now drop the vertex labels x and y.

Let r1 be a vertex in C colored 1. By assumption, T is Kempe-locked with
respect to the edge ur1. Thus, there must be a vertex r2 6= r1 in C also colored 1
so that the path r1ur2 is part of a 2-color cycle C ′ using the colors 1 and 3. See
figure 8. Recolor u from 3 to 4. Let s1 be a vertex colored 2 in C that lies between
r1 and r2 and is enclosed by C ′ and suppose it is the only vertex lying between r1
and r2 that is enclosed by C ′. Then a 2-color cycle using the colors 2 and 4 that
includes the edge us1 cannot exist and T cannot be Kempe-locked with respect to
us1. But if there is a vertex s2 6= s1 colored 2 lying between r1 and r2, then a
2-color cycle C ′′ using the colors 2 and 4 exists and C ′′ is essentially enclosed by
C ′, the two cycles touching only at u. Recolor u from 4 to 3 and let r3 be a vertex
colored 1 that lies between s1 and s2 and is enclosed by both C ′ and C ′′. If r3
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Figure 8. “Telescoping” process used to prove theorem 4.

is the only vertex lying between s1 and s2 that is enclosed by C ′′, then the edge
ur3 cannot be Kempe-locked. However, if there is a vertex r4 6= r3 colored 1 lying
between s1 and s2, then there must be a 2-color cycle including the path r3ur4 that
uses the colors 1 and 3. Because the order of T is finite, this “telescoping” process
of switching the color of u between 3 and 4 and finding “nested” cycles touching
only at u cannot continue indefinitely; at some point, there will be either a single
vertex in C colored 1 between vertices in C colored 2 (with u colored 3) or a single
vertex in C colored 2 between vertices in C colored 1 (with u colored 4). In either
case, the edge containing u and that single vertex will be one for which T is not
Kempe-locked, contradicting the initial supposition. �
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