Preprint
Article

This version is not peer-reviewed.

Generalized Convolution Spectral Mixture for Multi-Task Gaussian Processes

Submitted:

19 October 2018

Posted:

22 October 2018

You are already at the latest version

Abstract
Multi-task Gaussian processes (MTGPs) are a powerful approach for modeling structured dependencies among multiple tasks. Researchers on MTGPs have contributed to enhance this approach in various ways. Current MTGP methods, however, cannot model nonlinear task correlations in a general way. In this paper we address this problem. We focus on spectral mixture (SM) based kernels and propose an enhancement of this type of kernels, called multi-task generalized convolution spectral mixture (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and mixtures dependency, including time and phase delay, not only between different tasks but also within a task at the spectral mixture level. Each task in MT-GCSM has its own generalized convolution spectral mixture kernel (GCSM) with a different number of convolution structures and all spectral mixtures from different tasks are dependent. Furthermore, the proposed kernel uses inner and outer full cross convolution between base spectral mixtures, so that the base spectral mixtures in the tasks are not necessarily aligned. Extensive experiments on synthetic and real-life datasets illustrate the difference between MT-GCSM and other kernels as well as the practical effectiveness of MT-GCSM.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated