Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars

Version 1 : Received: 5 October 2018 / Approved: 9 October 2018 / Online: 9 October 2018 (10:01:26 CEST)

A peer-reviewed article of this Preprint also exists.

Fornaro, T.; Steele, A.; Brucato, J.R. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life 2018, 8, 56. Fornaro, T.; Steele, A.; Brucato, J.R. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life 2018, 8, 56.

Abstract

Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between “building blocks of life” and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.

Keywords

Mars; minerals; biomarkers; catalysis; preservation; ionizing radiations

Subject

Engineering, Mining and Mineral Processing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.