Preprint
Article

This version is not peer-reviewed.

Engineering Design Driven by Models and Measures: The Case of a Rigid Inflatable Boat

A peer-reviewed article of this preprint also exists.

Submitted:

06 October 2018

Posted:

08 October 2018

You are already at the latest version

Abstract
Rigid-hulled inflatable boats are extremely practical and popular nowadays. They offer a effective conciliation among usability and costs. Their stable and seaworthy behaviour is guaranteed by performing hydroplaning hulls coupled with unsinkable inflated tubes. At the same time, their design is often based on tradition and preconceptions. Rarely, the design assumptions are validated by the reality or, even, by deeper investigations. In this article, both numerical methods and experimental mechanics techniques are proposed as an essential way for supporting the designers in their decisive tasks. Three different situations are detailed where a numerical or an experimental approach shows its benefit inside the engineering design process: firstly permitting to investigate the behaviour of materials driving the fiberglass selection; then measuring the levels of stress and strain in the hull during sailing; finally, using all available information as a base for developing numerical models of the hull slamming in waves. Even if the discussion is focused on a rigid inflatable boat, large part of its considerations is relevant beyond this special case.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated