Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Methane, Nitrous Oxide and Ammonia Emissions from Livestock Farming in the Red River Delta, Vietnam: An Inventory and Projection for 2000-2030

Version 1 : Received: 29 September 2018 / Approved: 30 September 2018 / Online: 30 September 2018 (06:04:22 CEST)

A peer-reviewed article of this Preprint also exists.

Truong, A.H.; Kim, M.T.; Nguyen, T.T.; Nguyen, N.T.; Nguyen, Q.T. Methane, Nitrous Oxide and Ammonia Emissions from Livestock Farming in the Red River Delta, Vietnam: An Inventory and Projection for 2000–2030. Sustainability 2018, 10, 3826. Truong, A.H.; Kim, M.T.; Nguyen, T.T.; Nguyen, N.T.; Nguyen, Q.T. Methane, Nitrous Oxide and Ammonia Emissions from Livestock Farming in the Red River Delta, Vietnam: An Inventory and Projection for 2000–2030. Sustainability 2018, 10, 3826.

Abstract

Livestock farming is a major source of greenhouse gas and ammonia emissions. In this study, we estimate methane, nitrous oxide and ammonia emission from livestock sector in the Red River Delta region from 2000 to 2015 and projection to 2030 using IPCC 2006 methodologies with the integration of local emission factors and provincial statistic livestock database. Methane, nitrous oxide and ammonia emissions in 2030 are estimated at 132 kt, 8.3 kt and 34.2 kt, respectively. Total global warming potential is 9.7 MtCO2eq in 2030, accounts for 33% greenhouse gas emissions from livestock in Vietnam. Pig farming is responsible for half of both greenhouse gases and ammonia emissions in the studied region. Other major livestock for greenhouse gas emission is cattle and for ammonia emission is poultry. Hanoi contributes for the largest emissions in the region in 2015 but will be caught up and surpassed by other provinces in 2030.

Keywords

emission inventory; livestock; greenhouse gases; air pollutant

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.