Preprint
Article

Photocatalytic Degradation of Estriol Using Iron-Doped TiO2 under High and Low UV-Irradiation

This version is not peer-reviewed.

Submitted:

29 September 2018

Posted:

29 September 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Iron Doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically investigated under high and low fluence values of UV-radiation. The Fe-TiO2 physical characterization was performed using X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Diffuse Reflectance Spectroscopy (DRS), and X-Ray Photoelectron Spectroscopy (XPS) technique. The XPS evidenced that ferric ion (Fe3+) was in the lattice of TiO2 and co-dopants no intentionally added were also present due to the precursors of the synthetic method. The Fe3+ concentration played a key role in the photocatalytic generation of hydroxyl radical (•OH) and estriol (E3) degradation. Fe-TiO2 materials accomplished E3 degradation, and it was found that the catalyst with 0.3 at. % content of Fe (0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV-irradiation compared with no intentionally Fe-added TiO2 (zero-iron TiO2) and Aeroxide® TiO2 P25. Furthermore, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV-irradiation may have applications when radiation intensity must be controlled, as in medical applications, or when strong UV absorbing species are present in water.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

382

Views

310

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated