Preprint Article Version 1 This version is not peer-reviewed

Development of Self-Sensing Textile Strengthening System Based on High Strength Carbon Fiber

Version 1 : Received: 26 September 2018 / Approved: 26 September 2018 / Online: 26 September 2018 (14:56:29 CEST)

A peer-reviewed article of this Preprint also exists.

Górski, M.; Krzywoń, R.; Borodeńko, M. Development of Self-Sensing Textile Strengthening System Based on High-Strength Carbon Fiber. Materials 2018, 11, 2062. Górski, M.; Krzywoń, R.; Borodeńko, M. Development of Self-Sensing Textile Strengthening System Based on High-Strength Carbon Fiber. Materials 2018, 11, 2062.

Journal reference: Materials 2018, 11, 2062
DOI: 10.3390/ma11102062

Abstract

Monitoring of structures is one of the engineering challenges of the 21st century. At the same time, as a result of changes in the conditions of use, design errors, many building structures require strengthening. The article presents research on the development of the external strengthening carbon fiber textile with an option of self-sensing. The idea is based on the pattern of resistive strain gauge, where thread is provided in a zig-zag of parallel lines. Already the first laboratory tests showed the high efficiency of the system in the measurement of strains, but also revealed the sensitivity of measurement to environmental conditions. The article presents studies on the influence of temperature and humidity on the measurement. To separate those effects, resistance changes were tested on unloaded concrete and wooden samples. The models were placed in a climatic chamber and the daily cycle of temperature and humidity changes was simulated. The results of the research confirm preliminary observations. Resistivity growths with the temperature. This effect is more visible on concrete samples, presumably due to its greater natural humidity. The strain measurement with carbon fibers is very sensitive to temperature changes and application of this method in practice requires compensation.

Subject Areas

CFRP strengthening; textile sensor; strain gauge errors compensation

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.