Preprint Article Version 1 This version is not peer-reviewed

Nanoparticle-Lipid Interaction: Job Scattering Plots to Differentiate Vesicle Aggregationfrom Supported Lipid Bilayer Formation

Version 1 : Received: 20 September 2018 / Approved: 20 September 2018 / Online: 20 September 2018 (16:29:35 CEST)

A peer-reviewed article of this Preprint also exists.

Mousseau, F.; Oikonomou, E.K.; Baldim, V.; Mornet, S.; Berret, J.-F. Nanoparticle-Lipid Interaction: Job Scattering Plots to Differentiate Vesicle Aggregation from Supported Lipid Bilayer Formation. Colloids Interfaces 2018, 2, 50. Mousseau, F.; Oikonomou, E.K.; Baldim, V.; Mornet, S.; Berret, J.-F. Nanoparticle-Lipid Interaction: Job Scattering Plots to Differentiate Vesicle Aggregation from Supported Lipid Bilayer Formation. Colloids Interfaces 2018, 2, 50.

Journal reference: Colloids Interfaces 2018, 2, 50
DOI: 10.3390/colloids2040050

Abstract

The impact of nanomaterials on lung fluids or on the plasma membrane of living cells has prompted researchers to examine the interactions between nanoparticles and lipid vesicles. Recent studies have shown that nanoparticle-lipid interaction leads to a broad range of structures including supported lipid bilayers (SLB), particles adsorbed at the surface or internalized inside vesicles, and mixed aggregates. Today, there is a need to have simple protocols that can readily assess the nature of structures obtained from particles and vesicles. Here we apply the method of continuous variation for measuring Job scattering plots and provide analytical expressions for the scattering intensity in various scenarios. The result that emerges from the comparison between modeling and experimental measurements is that electrostatics plays a key role in the association, but it is not sufficient to induce the formation of supported lipid bilayers.

Subject Areas

Nanoparticles – Bio-nano interfaces – Electrostatic interactions – Supported Lipid Bilayers

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.