Preprint
Review

This version is not peer-reviewed.

Group entropies: from phase space geometry to entropy functionals via group theory

A peer-reviewed article of this preprint also exists.

Submitted:

12 September 2018

Posted:

13 September 2018

You are already at the latest version

Abstract
The entropy of Boltzmann-Gibbs, as proved by Shannon and Khinchin, is based on four axioms, where the fourth one concerns additivity. The group theoretic entropies make use of formal group theory to replace this axiom with a more general composability axiom. As has been pointed out before, generalized entropies crucially depend on the number of allowed number degrees of freedom $N$. The functional form of group entropies is restricted (though not uniquely determined) by assuming extensivity on the equal probability ensemble, which leads to classes of functionals corresponding to sub-exponential, exponential or super-exponential dependence of the phase space volume $W$ on $N$. We review the ensuing entropies, discuss the composability axiom, relate to the Gibbs' paradox discussion and explain why group entropies may be particularly relevant from an information theoretic perspective.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated