Preprint
Article

This version is not peer-reviewed.

Quantitative Evaluation of Twelve Major Components of Astragali Radix Sulfur-Fumigated with Different Durations by UPLC-MS

A peer-reviewed article of this preprint also exists.

Submitted:

04 September 2018

Posted:

05 September 2018

You are already at the latest version

Abstract
In this study, an improved UPLC-MS method for simultaneously quantifying twelve major components belonging to two chemical types was developed and validated, and was applied to quantitatively compare the quality of Astragali Radix sulfur-fumigated with different durations and the fresh reference sample. The results showed that the contents of triterpenes Astragaloside III and Astragaloside IV decreased moderately, while the flavonoids calycosin, formononetin, and 7,2'-dihydroxy-3',4'-dimethoxyisoflavane decreased significantly, and its corresponding flavonoid glycosides increased accordingly, which indicatied that the happening of chemical transformation of flavonoids and glycosides in the sulfur-fumigated process. These transformations were further confirmed by the the synthesis of flavonoid glycosides under the simulated sulphur-fumigation circumstances. Furthermore, the sulfur-fumigated duration had a proportional relationship with the contents of compounds 7, 11, and 12. All these results suggested that the established method was precise, accurate and sensitive enough for the global quality evaluation of sulfur-fumigated Astragali Radix, and sulfur-fumigation can not only change the proportions of bioactive components, but also cause the chemical transformation in the Astragali Radix.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated