Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Unification of Commutative Relativity and Noncommutative Quantum Dynamics Via Cyclic Groupoids and Spacetime Fusion Categories

Version 1 : Received: 1 September 2018 / Approved: 3 September 2018 / Online: 3 September 2018 (10:51:51 CEST)

How to cite: Tozzi, A.; Peters, J.F. Unification of Commutative Relativity and Noncommutative Quantum Dynamics Via Cyclic Groupoids and Spacetime Fusion Categories. Preprints 2018, 2018090021. https://doi.org/10.20944/preprints201809.0021.v1 Tozzi, A.; Peters, J.F. Unification of Commutative Relativity and Noncommutative Quantum Dynamics Via Cyclic Groupoids and Spacetime Fusion Categories. Preprints 2018, 2018090021. https://doi.org/10.20944/preprints201809.0021.v1

Abstract

The unexploited unification of general relativity and quantum physics is a painstaking issue that prevents physicists to properly understanding the whole of Nature. Here we propose a pure mathematical approach that introduces the problem in terms of group theory. Indeed, we build a cyclic groupoid (a nonempty set with a binary operation defined on it) that encompasses both the theories as subsets, making it possible to join together two of their most dissimilar experimental results, i.e., the commutativity detectable in our macroscopic relativistic world and the noncommutativity detectable in the quantum, microscopic world. This approach, combined with the Connes fusion operator, leads to a mathematical framework useful in the investigation of relativity/quantum mechanics relationships.

Keywords

Einstein; manifold; Hilbert space; Abelian; dagger category

Subject

Physical Sciences, Quantum Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.