Preprint
Article

Symbolic Regression Based Genetic Approximations of the Colebrook Equation for Flow Friction

This version is not peer-reviewed.

Submitted:

29 August 2018

Posted:

30 August 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Widely used in hydraulics, the Colebrook equation for flow friction relates implicitly to the input parameters; the Reynolds number, Re and the relative roughness of inner pipe surface, ε/D with the output unknown parameter; the flow friction factor, λ; λ=f(λ, Re, ε/D). In this paper, a few explicit approximations to the Colebrook equation; λ≈f(Re, ε/D), are generated using the ability of artificial intelligence to make inner patterns to connect input and output parameters in explicit way not knowing their nature or the physical law that connects them, but only knowing raw numbers, {Re, ε/D}→{λ}. The fact that the used genetic programming tool does not know the structure of the Colebrook equation which is based on computationally expensive logarithmic law, is used to obtain better structure of the approximations which is less demanding for calculation but also enough accurate. All generated approximations are with low computational cost because they contain a limited number of logarithmic forms used although for normalization of input parameters or for acceleration, but they are also sufficiently accurate. The relative error regarding the friction factor λ, in best case is up to 0.13% with only two logarithmic forms used. As the second logarithm can be accurately approximated by the Padé approximation, practically the same error is obtained also using only one logarithm.
Keywords: 
Colebrook equation; flow friction; turbulent flow; genetic programming; symbolic regression; explicit approximations
Subject: 
Physical Sciences  -   Fluids and Plasmas Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

305

Views

254

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated