Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Practice-Oriented Buildability Criteria for Developing 3D-Printable Concretes in the Context of Digital Construction

Version 1 : Received: 24 August 2018 / Approved: 27 August 2018 / Online: 27 August 2018 (06:37:13 CEST)

A peer-reviewed article of this Preprint also exists.


Buildability, i.e. the ability of a deposited material bulk to retain its dimmensions under increasing load, is an inherent prerequisite for formwork-free digital construction (DC). Since DC processes are relatively new, no standard methods of characterization are available yet. The paper at hand presents practice-oriented buildabilty criteria by taking various process parameters and construction costs into consideration. In doing so, direct links between laboratory buildability tests and target applications are established. A systematic basis for calculating the time interval (TI) to be followed during laboratory testing is proposed for the full-width printing (FWP) and filament printing (FP) processes. The proposed approach is validated by applying it to a high-strength, printable, fine-grained concrete. Comparative analyses of FWP and FP revealed that to test the buildability of a material for FP processes, higher velocities of the printhead should be established for laboratory tests in comparison to those needed for FWP process, providing for equal construction rates.


digital construction; 3D-concrete-printing; buildabiltiy; additive manufacturing


Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.