Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Agro-Economic Water Productivity-Based Hydro-Economic Modeling for Optimal Irrigation and Crop Pattern Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change.

Version 1 : Received: 13 August 2018 / Approved: 5 November 2018 / Online: 5 November 2018 (11:12:25 CET)

A peer-reviewed article of this Preprint also exists.

Emami, F.; Koch, M. Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change. Sustainability 2018, 10, 3953. Emami, F.; Koch, M. Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change. Sustainability 2018, 10, 3953.

Abstract

For water-stressed regions like Iran improving the effectiveness and productivity of agricultural water-use is of utmost importance due to climate change and unsustainable demands. Therefore, a hydro-economic model has been developed here for the Zarrine River Basin with the central concept of that demands are value-sensitive functions, where quantities of water-uses at different locations and times have a changeable economic benefits. To do this, the potential crop yields and the surface and groundwater resources, especially Boukan Dam inflow are simulated using the hydrologic model, SWAT, based on predicted climatic scenarios i.e. quantile mapping-downscaled projections. Then, to allocate the agricultural water based on the agro- economic crop water productivity (AEWP) of crops, a basin-wide water management tool, MODSIM, is customized. Next, a simulation- optimization model has been developed using a coupled CSPSO-MODSIM, to optimize the total AEWP, considering climatic impact and crop pattern scenarios, for 2020-2038, 2050-2068 and 2080-2098 periods. Finally, the optimum crop pattern and crop water irrigation depths are presented for different RCPs and periods. The results indicated that this approach will improve considerably the AEWPs and decrease the agricultural water-use up to 40%. Thus, this integrated model is able to support water authorities and other stakeholder in a water-scarce basin, as is the study area.

Keywords

Agro-economic crop water productivity; Hydro-economic modeling; CSPSO-MODSIM; Economic benefits; Crop pattern planning; Crop water Irrigation depth; Climate change; Iran.

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.