Preprint
Article

This version is not peer-reviewed.

Energy-Efficient Forest Fire Prediction Model based on Two-Stage Adaptive Duty-Cycled Hybrid X-MAC Protocol

A peer-reviewed article of this preprint also exists.

Submitted:

02 September 2018

Posted:

03 September 2018

You are already at the latest version

Abstract
In this paper, we propose an adaptive duty-cycled hybrid X-MAC (ADX-MAC) protocol for energy-efficient forest fire prediction. The X-MAC protocol acquires the additional environmental status collected by each forest fire monitoring sensor for a certain period. And, based on these values, the length of sleep interval of duty-cycle is changed to efficiently calculate the risk of occurrence of forest fire according to the mountain environment. The performance of the proposed ADX-MAC protocol was verified through experiments the proposed ADX-MAC protocol improves throughput by 19% and was more energy-efficient by 24% compared to X-MAC protocol. As the probability of forest fires increases, the length of the duty cycle is shortened, confirming that the forest fires are detected at a faster cycle.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated