Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

CFD Analysis of Twin Turbulent Impinging Axisymmetric Jets at Different Impingement Angles

Version 1 : Received: 2 August 2018 / Approved: 2 August 2018 / Online: 2 August 2018 (10:47:24 CEST)

A peer-reviewed article of this Preprint also exists.

Gopalakrishnan, R.N.; Disimile, P.J. CFD Analysis of Twin Turbulent Impinging Round Jets at Different Impingement Angles. Fluids 2018, 3, 79. Gopalakrishnan, R.N.; Disimile, P.J. CFD Analysis of Twin Turbulent Impinging Round Jets at Different Impingement Angles. Fluids 2018, 3, 79.

Abstract

Based on the insight gained from single jet analysis performed earlier [1], CFD analysis on turbulent jets impinging on one another at an angle was performed. Multiple impingement angles were considered for this study to gain better understanding of the parameters affecting resultant jet growth and velocity distribution. From the study of single jet, it was concluded that the SST k-ω turbulence model was the ideal turbulence model capable of accurately predicting the flow physics of the jets exiting a fully developed pipe at low Reynolds number. Hence, for the study of impinging jets, SST k-ω turbulence model was used to study the velocity and jet growth characteristics. It became evident that the mesh alignment with the velocity vector at exit of the pipe domain plays a crucial role in the accuracy of the results. The parameter used to evaluate this condition was identified as False Diffusion and was observed to affect the TKE parameter significantly. Methods to reduce false diffusion are also discussed in this article. Based on the mesh obtained from the grid sensitivity study, jets impinging at 30, 45 and 60 degrees at Reynolds number of 7500 were numerically analyzed. It was observed that the profile of the resultant jet closely matched with the prediction of elliptical profile predicted by past researchers, [2] and [3]. Also, it was seen that higher jet growth was predicted in case of jets impinging at a higher impingement angle.

Keywords

Reynolds-averaged Navier–Stokes (RANS); round jets; turbulence model; impinging jets; SST k-omega model

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.