Preprint
Review

This version is not peer-reviewed.

Functional Metabolomics – a Useful Tool to Characterize Stress-Induced Metabolome Alterations Opening New Avenues Towards Tailoring Food Crop Quality

A peer-reviewed article of this preprint also exists.

Submitted:

02 July 2018

Posted:

03 July 2018

You are already at the latest version

Abstract
The breeding of stress-tolerant cultivated plants that would allow for a reduction in harvest losses and undesirable decrease in quality attributes requires a new quality of knowledge on molecular markers associated with relevant agronomic traits, on quantitative metabolic responses of plants on stress challenges, and on the mechanisms controlling the biosynthesis of these molecules. By combining metabolomics with genomics, transcriptomics and proteomics datasets a more comprehensive knowledge of the composition of crop plants used for food or animal feed is possible. In order to optimize crop trait developments, to enhance crop yields and quality, as well as to guarantee nutritional and health factors, that provides the possibility to create functional food or feedstuffs, the knowledge about the plants’ metabolome is crucial. Next to classical metabolomics studies, this review focusses on several metabolomics based working techniques, such as sensomics, lipidomics, hormonomics and phytometabolomics, which were used to characterize metabolome alterations during abiotic and biotic stress, to find resistant food crops with a preferred quality or at least to produce functional food crops are highlighted.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated