Preprint
Article

Functional Comparison of High and Low Molecular Weight Chitosan on Lipid Metabolism and Signals in High-Fat Diet-Fed Rats

This version is not peer-reviewed.

Submitted:

01 July 2018

Posted:

03 July 2018

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The present study examined and compared the effects of high- and low-molecular weight (MW) chitosan, a nutraceutical, on intestinal and liver lipid metabolism in rats fed with high-fat diet. Both high- and low-MW chitosan decreased liver weight, elongated small intestine, improved the dysregulation of blood lipids and liver fat accumulation, and increased fecal lipid excretion in high-fat diet-fed rats. Supplementation of both high- and low-MW chitosan significantly inhibited the decreased phosphorylated AMP-activated protein kinase (AMPK)α and peroxisome proliferator-activated receptor (PPAR)α protein expressions and the increased lipogenesis/cholesterogenesis-associated protein expressions (sterol regulatory element binding protein (SREBP)1c, SREBP2, and PPARγ) and the decreased apolipoprotein (Apo)E and microsomal triglyceride transfer protein (MTTP) protein expressions in the livers of high-fat diet-fed rats. Both high and low-MW chitosan supplementation could also suppress the increased MTTP protein expression and the decreased angiopoietin-like protein (Angptl)4 protein expression in the intestines of high-fat diet-fed rats. Comparison between high and low-MW chitosan, high-MW chitosan has a higher efficiency than low-MW chitosan on the inhibition of intestinal lipid absorption and the increase of hepatic fatty acid oxidation, which can improve liver lipid biosynthesis and accumulation.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

500

Views

440

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated