Chiavaioli, F.; Laneve, D.; Farnesi, D.; Falconi, M.C.; Nunzi Conti, G.; Baldini, F.; Prudenzano, F. Long Period Grating-Based Fiber Coupling to WGM Microresonators for Sensing Applications. Micromachines2018, 9, 366.
Chiavaioli, F.; Laneve, D.; Farnesi, D.; Falconi, M.C.; Nunzi Conti, G.; Baldini, F.; Prudenzano, F. Long Period Grating-Based Fiber Coupling to WGM Microresonators for Sensing Applications. Micromachines 2018, 9, 366.
Abstract
A comprehensive model for designing robust all-in-fiber microresonator-based optical sensing setups is illustrated. The investigated all-in-fiber setups allow light to selectively excite high-Q whispering gallery modes (WGMs) into optical microresonators, thanks to a pair of identical long period gratings (LPGs) written in the same optical fiber. Microspheres and microbubbles are used as microresonators and evanescently side-coupled to a thick fiber taper, with a waist diameter of about 18 µm, in-between the two LPGs. The model is validated by comparing the simulated results with the experimental data. A good agreement between the simulated and experimental results is obtained. As an application example, the sensing of the concentration of an aqueous glycerol solution is demonstrated. The model is general and by exploiting the refractive index and/or absorption characteristics at suitable wavelengths, the sensing of other substances or pollutants can be also predicted.
Keywords
microresonator; whispering gallery mode; long period grating; fiber coupling; distributed sensing; chemical/biological sensing
Subject
MATERIALS SCIENCE, General Materials Science
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.