Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Long Period Grating-Based Fiber Coupling to WGM Microresonators for Sensing Applications

Version 1 : Received: 29 June 2018 / Approved: 2 July 2018 / Online: 2 July 2018 (07:49:08 CEST)

A peer-reviewed article of this Preprint also exists.

Chiavaioli, F.; Laneve, D.; Farnesi, D.; Falconi, M.C.; Nunzi Conti, G.; Baldini, F.; Prudenzano, F. Long Period Grating-Based Fiber Coupling to WGM Microresonators for Sensing Applications. Micromachines 2018, 9, 366. Chiavaioli, F.; Laneve, D.; Farnesi, D.; Falconi, M.C.; Nunzi Conti, G.; Baldini, F.; Prudenzano, F. Long Period Grating-Based Fiber Coupling to WGM Microresonators for Sensing Applications. Micromachines 2018, 9, 366.

Abstract

A comprehensive model for designing robust all-in-fiber microresonator-based optical sensing setups is illustrated. The investigated all-in-fiber setups allow light to selectively excite high-Q whispering gallery modes (WGMs) into optical microresonators, thanks to a pair of identical long period gratings (LPGs) written in the same optical fiber. Microspheres and microbubbles are used as microresonators and evanescently side-coupled to a thick fiber taper, with a waist diameter of about 18 µm, in-between the two LPGs. The model is validated by comparing the simulated results with the experimental data. A good agreement between the simulated and experimental results is obtained. As an application example, the sensing of the concentration of an aqueous glycerol solution is demonstrated. The model is general and by exploiting the refractive index and/or absorption characteristics at suitable wavelengths, the sensing of other substances or pollutants can be also predicted.

Keywords

microresonator; whispering gallery mode; long period grating; fiber coupling; distributed sensing; chemical/biological sensing

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.