Preprint
Article

This version is not peer-reviewed.

An Efficient Grid-based K-prototypes Algorithm for Sustainable Decision Making Using Spatial Objects

A peer-reviewed article of this preprint also exists.

Submitted:

26 June 2018

Posted:

27 June 2018

You are already at the latest version

Abstract
Data mining plays a critical role in the sustainable decision making. The k-prototypes algorithm is one of the best-known algorithm for clustering both numeric and categorical data. Despite this, however, clustering a large number of spatial object with mixed numeric and categorical attributes is still inefficient due to its high time complexity. In this paper, we propose an efficient grid-based k-prototypes algorithms, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can remove unnecessary distance calculation. The second proposed algorithm as extensions of the first proposed algorithm utilizes spatial dependence that spatial data tend to be more similar as objects are closer. Each cell has a bitmap index which stores categorical values of all objects in the same cell for each attribute. This bitmap index can improve the performance in case that a categorical data is skewed. Our evaluation experiments showed that proposed algorithms can achieve better performance than the existing pruning technique in the k-prototypes algorithm.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated