Baldoví, J.J.; Kondinski, A. Exploring High-Symmetry Lanthanide-Functionalized Polyoxopalladates as Building Blocks for Quantum Computing. Inorganics2018, 6, 101.
Baldoví, J.J.; Kondinski, A. Exploring High-Symmetry Lanthanide-Functionalized Polyoxopalladates as Building Blocks for Quantum Computing. Inorganics 2018, 6, 101.
Baldoví, J.J.; Kondinski, A. Exploring High-Symmetry Lanthanide-Functionalized Polyoxopalladates as Building Blocks for Quantum Computing. Inorganics2018, 6, 101.
Baldoví, J.J.; Kondinski, A. Exploring High-Symmetry Lanthanide-Functionalized Polyoxopalladates as Building Blocks for Quantum Computing. Inorganics 2018, 6, 101.
Abstract
The structural, electronic and magnetochemical properties of the star-shaped polyoxopalladate [Pd15O10(SeO3)10]10− (POPd) and its lanthanide functionalized derivatives have been investigated on the basis of density functional theory followed by a ligand field analysis using the Radial Effective Charge (REC) model. Our study predicts that heteroPOPd is a robust cryptand that enforces D5h symmetry around the encapsulated Ln3+ centers. This rigid coordination environment favors interesting potential magnetic behavior in the Er and Ho derivatives, which may be of interest for molecular spintronics and quantum computing applications.
Keywords
lanthanides; single-ion magnets; spin qubits; polyoxopalladates; density functional theory
Subject
Chemistry and Materials Science, Inorganic and Nuclear Chemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.